Cling:快速模糊查找任何文件

Cling:快速模糊查找任何文件

Cling Instant fuzzy find any file on macOS Cling 项目地址: https://gitcode.com/gh_mirrors/cling2/Cling

项目介绍

Cling 是一款专注于快速文件查找的 macOS 应用程序。它的设计理念是通过利用高效的模糊搜索技术,让用户能够迅速定位到所需的文件,并进行即时操作。Cling 的目标是成为 macOS 用户的高效助手,提供与 Windows 平台上流行的 Everything 应用相似的功能体验。

项目技术分析

Cling 的核心功能依赖于两个强大的开源工具:fd 和 fzf。fd 是一个快速的文件搜索工具,它能够递归地搜索文件系统,并使用 Rust 语言编写,以提供高效的性能。fzf 则是一个模糊搜索工具,它能够通过命令行界面提供快速的搜索体验。Cling 结合了这两个工具的优势,实现了在文件系统中快速查找文件的功能。

在技术实现上,Cling 通过维护一个内存中的文件系统索引,实现了即时搜索的结果反馈。当用户打开 Cling 窗口时,搜索索引会被加载到内存中,当窗口不在前台时,索引会被标记为可交换到磁盘,以便 macOS 在内存压力高时释放内存。

项目及技术应用场景

Cling 的设计适用于多种日常工作和生活场景,以下是一些典型的应用场景:

  1. 文件快速定位:当您需要找到某个文件,但只记得文件名的一部分或拼写不完整时,Cling 的模糊搜索功能能够帮助您迅速找到目标文件。
  2. 文件即时操作:选中文件后,Cling 提供了快速的操作选项,如使用指定应用打开、复制路径、批量重命名、快速查看等,无需鼠标操作,提高工作效率。
  3. 系统文件搜索:Cling 能够搜索系统文件、隐藏文件、点文件以及应用数据,这些是 Spotlight 等传统搜索工具所忽视的。

项目特点

以下是 Cling 相较于其他文件搜索工具的显著特点:

  • 模糊搜索:Cling 支持模糊搜索,用户可以输入部分或拼写错误的查询来找到文件。
  • 系统文件支持:Cling 能够搜索到系统文件和隐藏文件,这一点是 Spotlight 等工具所不具备的。
  • 灵活的索引管理:用户可以通过 ~/.fsignore 文件来指定排除的文件和文件夹,保持索引的清洁和专注。
  • 外部存储搜索:Cling 默认索引外部存储设备,如 USB 驱动器、外部硬盘和网络共享,使得这些设备上的文件也能即时搜索。
  • 内存和CPU优化:Cling 通过在后台将索引标记为可交换到磁盘,以及暂停后台搜索,优化了内存和CPU的使用。

与其他类似工具(如 Spotlight、Alfred、Raycast)相比,Cling 提供了更快的模糊搜索和系统文件搜索功能。而与 ProFind、HoudahSpot 等工具不同,Cling 更专注于快速找到特定文件并进行即时操作,而不是构建复杂的查询来找到所有匹配的文件。

在性能方面,Cling 的内存使用量可能会较高,但在后台运行时,它会释放内存以节省资源。CPU 使用方面,尽管搜索操作可能会在短时间内占用大量CPU资源,但每次搜索的时间非常短暂,不会对系统的正常运行造成影响。

总结来说,Cling 是一款针对 macOS 用户的高效文件搜索工具,它通过模糊搜索和即时操作功能,为用户带来了便捷和快速的文件管理体验。无论您是开发者、设计师还是普通用户,Cling 都能成为您日常工作中不可或缺的助手。

Cling Instant fuzzy find any file on macOS Cling 项目地址: https://gitcode.com/gh_mirrors/cling2/Cling

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张俊领Tilda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值