Crab 推荐引擎项目使用教程
1. 项目目录结构及介绍
Crab 项目的目录结构如下:
crab/
├── AUTHORS.rst
├── COPYING
├── LICENCE
├── README.md
├── setup.py
├── doc/
│ └── ...
├── examples/
│ └── ...
└── scikits/
└── ...
目录结构介绍
AUTHORS.rst
: 项目贡献者列表。COPYING
: 项目许可证文件。LICENCE
: 项目许可证文件。README.md
: 项目介绍和基本使用说明。setup.py
: 项目的安装脚本。doc/
: 项目文档目录,包含详细的文档和教程。examples/
: 项目示例代码目录,包含多个使用示例。scikits/
: 项目核心代码目录,包含推荐引擎的实现。
2. 项目启动文件介绍
Crab 项目没有明确的启动文件,因为它是一个库,通常通过导入模块的方式在 Python 脚本中使用。以下是一个简单的启动示例:
from scikits.crab import datasets
from scikits.crab.models import MatrixPreferenceDataModel
from scikits.crab.metrics import pearson_correlation
from scikits.crab.similarities import UserSimilarity
from scikits.crab.recommenders.knn import UserBasedRecommender
# 加载数据集
movies = datasets.load_sample_movies()
# 创建数据模型
model = MatrixPreferenceDataModel(movies)
# 计算用户相似度
similarity = UserSimilarity(model, pearson_correlation)
# 创建推荐引擎
recommender = UserBasedRecommender(model, similarity, with_preference=True)
# 获取推荐结果
recommendations = recommender.recommend(1)
print(recommendations)
3. 项目配置文件介绍
Crab 项目没有明确的配置文件,因为它是一个库,通常通过代码中的参数进行配置。以下是一些常见的配置示例:
数据模型配置
from scikits.crab.models import MatrixPreferenceDataModel
# 创建数据模型
model = MatrixPreferenceDataModel(data)
相似度计算配置
from scikits.crab.metrics import pearson_correlation
from scikits.crab.similarities import UserSimilarity
# 计算用户相似度
similarity = UserSimilarity(model, pearson_correlation)
推荐引擎配置
from scikits.crab.recommenders.knn import UserBasedRecommender
# 创建推荐引擎
recommender = UserBasedRecommender(model, similarity, with_preference=True)
通过以上配置,你可以根据具体需求调整推荐引擎的行为。