txAdmin 项目下载及安装教程

txAdmin 项目下载及安装教程

txAdmin The official FiveM server management platform used by over 23k servers! txAdmin 项目地址: https://gitcode.com/gh_mirrors/tx/txAdmin

1、项目介绍

txAdmin 是一个功能全面的 Web 面板,用于远程管理和监控 FiveM/RedM 服务器。它被全球超过 23,000 个服务器使用。txAdmin 提供了以下主要功能:

  • 基于配方的服务器部署器:在 60 秒内创建一个服务器。
  • 服务器管理:启动、停止、重启服务器实例或资源。
  • 游戏内管理菜单:包括玩家模式、传送、车辆管理、治疗、公告发送等功能。
  • 访问控制:通过密码或 CitizenFX 管理权限系统登录。
  • 监控:自动重启崩溃或挂起的服务器,监控 CPU/RAM 使用情况,实时控制台等。
  • 玩家管理:警告系统、封禁系统、白名单系统等。
  • 翻译支持:支持多种语言。

2、项目下载位置

你可以通过以下链接下载 txAdmin 项目:

txAdmin GitHub 仓库

3、项目安装环境配置

3.1 系统要求

  • 操作系统:Windows 或 Linux
  • 依赖:需要安装 Node.js 和 npm

3.2 环境配置步骤

  1. 安装 Node.js 和 npm

    • 访问 Node.js 官网 下载并安装最新版本的 Node.js。npm 会随 Node.js 一起安装。
  2. 验证安装

    • 打开命令行工具(Windows 用户可以使用 PowerShell 或 CMD,Linux 用户可以使用终端),输入以下命令验证 Node.js 和 npm 是否安装成功:

      node -v
      npm -v
      
    • 如果安装成功,会显示 Node.js 和 npm 的版本号。

3.3 环境配置示例

Node.js 安装示例

4、项目安装方式

4.1 克隆项目

在命令行工具中,导航到你希望存放项目的目录,然后运行以下命令克隆 txAdmin 项目:

git clone https://github.com/tabarra/txAdmin.git

4.2 安装依赖

进入项目目录并安装依赖:

cd txAdmin
npm install

4.3 启动项目

安装完成后,你可以通过以下命令启动 txAdmin:

npm start

5、项目处理脚本

txAdmin 提供了一些处理脚本,用于自动化任务和配置管理。以下是一些常用的脚本:

  • deploy.js:用于部署服务器配置。
  • scripts/backup.js:用于备份玩家数据。
  • scripts/optimize.js:用于优化数据库。

你可以通过以下命令运行这些脚本:

node deploy.js
node scripts/backup.js
node scripts/optimize.js

总结

通过以上步骤,你可以成功下载并安装 txAdmin 项目,并开始使用其强大的服务器管理功能。如果你在安装过程中遇到任何问题,可以参考项目的 GitHub 仓库 中的文档或加入 txAdmin 的 Discord 社区寻求帮助。

txAdmin The official FiveM server management platform used by over 23k servers! txAdmin 项目地址: https://gitcode.com/gh_mirrors/tx/txAdmin

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奚龙韦Rhoda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值