RewardBench:奖励模型评估基准技术文档

RewardBench:奖励模型评估基准技术文档

reward-bench RewardBench: the first evaluation tool for reward models. reward-bench 项目地址: https://gitcode.com/gh_mirrors/re/reward-bench


RewardBench 是一个专为评价奖励模型(如直接偏好优化[DPO]训练的模型)能力与安全性而设计的基准平台。该平台提供了对多种奖励模型的通用推理代码、标准化数据集处理和测试以及分析可视化工具,旨在促进奖励模型的公平比较与理解。

安装指南

快速安装

您可以通过以下命令迅速开始使用 RewardBench:

pip install rewardbench

之后,通过简单命令执行模型评估:

rewardbench --model={yourmodel} --dataset={yourdataset} --batch_size=8

对于直接偏好优化(DPO)模型,添加--ref_model={}参数即可自动调用相应配置。

完整安装

若需要从源码安装以获取最新功能,首先确保系统中已安装torch,然后执行:

pip install -e .

还需将您的Hugging Face访问令牌加入环境变量中:

echo 'export HF_TOKEN="{your_token}"' >> ~/.bashrc
source ~/.bashrc

为了运行生成式奖励模型,需额外安装依赖项:

pip install rewardbench[generative]

项目的使用说明

基本用法

RewardBench允许快速对任何奖励模型在任意偏好集上进行评估。基本命令格式如下,其中您可以替换{yourmodel}{yourdataset}为具体模型和数据集名:

rewardbench --model={yourmodel}

此外,支持通过指定参数运行特定场景,例如:

  • 使用特定聊天模板评估模型:

    rewardbench --model=OpenAssistant/reward-model-deberta-v3-large-v2 --dataset=allenai/ultrafeedback_binarized_cleaned --split=test_gen --chat_template=raw
    
  • 运行本地保存的DPO模型:

    rewardbench --model=Qwen/Qwen1.5-0.5B-Chat --ref_model=Qwen/Qwen1.5-0.5B --dataset=/path/to/local/dataset.jsonl --load_json
    

使用自定义模型与贡献

贡献模型至排行榜前,请先在HuggingFace仓库中创建议题,并可直接使用RewardBench评估本地模型。如果需要特殊适配,提交PR到相关代码库中的模型模块。

项目API使用文档

RewardBench的核心在于其API,简化了奖励模型的评估流程。重要命令包括:

  • 评估模型:使用scripts/run_rm.py来运行单个模型评估。

  • 评估DPO模型:使用scripts/run_dpo.py针对直接偏好优化模型进行评估。

  • 运行生成式模型:引入scripts/run_generative.py以利用语言模型作为评判者,支持本地与API模型。

  • 离线集成测试:通过analysis/run_ensemble_offline.py可以测试多个奖励模型的集成效果。

项目结构概述

  • README.md:项目的主要文档。
  • analysis/:包含用于分析RewardBench结果和其他奖励模型特性的工具。
  • rewardbench/:核心实用程序和模型文件夹。
  • scripts/:脚本和配置文件,用于训练和评估奖励模型。
  • tests/:单元测试区域。
  • DockerfileMakefile:用于构建可重复且可扩展研究环境的文件。
  • setup.py:使项目可通过pip安装。

此文档提供了一个全面的指导,让开发者和研究人员能够顺利地安装、理解和应用RewardBench进行奖励模型的评估和比较。请注意,实际操作时应替换占位符以匹配您的具体需求。

reward-bench RewardBench: the first evaluation tool for reward models. reward-bench 项目地址: https://gitcode.com/gh_mirrors/re/reward-bench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水骊梓Maureen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值