训练属于自己的游戏AI 技术文档 v0.3.0
train_your_own_game_AI 项目地址: https://gitcode.com/gh_mirrors/tr/train_your_own_game_AI
欢迎来到“训练属于自己的游戏AI”项目,本项目旨在引导开发者训练能够自主学习并操控游戏中角色的人工智能。当前版本特别关注于《只狼:影逝二度》的游戏AI训练,并提供了逐步指导。接下来,我们将详细介绍如何安装必要的软件环境、如何使用项目、理解项目API以及具体的安装步骤。
一、安装指南
基础环境搭建
首先,确保你的计算机已安装了Anaconda3。访问官方网站下载适合的操作系统版本并安装。
虚拟环境创建与依赖安装
打开命令行工具(如Anaconda Prompt或终端),执行以下命令来设置一个名为game_AI
的Python 3.8虚拟环境:
conda create -n game_AI python=3.8
激活刚创建的虚拟环境:
conda activate game_AI
接着,安装基础库:
conda install pandas matplotlib pywin32
通过特定镜像源安装第三方库以加快下载速度:
pip install opencv-python>=4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install tensorflow>=2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
最后,安装JupyterLab作为交互式开发平台:
conda install -c conda-forge jupyterlab
二、项目使用说明
本项目围绕两个游戏实例展开:《只狼:影逝二度》和正在进展中的《Muse Dash》。我们重点讲解《只狼:影逝二度》的实践过程。
-
开始之前:
- 确保游戏《只狼》已在本地安装且可运行。
- 查看提供的v0.2.0教程 Jupyter Notebook文件(
sekiro.ipynb
),它详细解释了如何配置AI的学习过程。
-
运行示例:
- 进入到项目目录下,使用JupyterLab或直接通过命令行启动Notebook。
- 执行 Notebook 中的每个单元格,按顺序进行AI训练和测试。
三、项目API使用文档
虽然这个文档不提供完整的API细节,但在game_player
模块中,关键文件如下:
- brain.py:定义AI的大脑逻辑,负责决策制定。
- control_keyboard_keys.py:控制游戏通过模拟键盘输入。
- detect_keyboard_keys.py:用于检测(模拟)键盘事件,虽然在这个AI场景中可能不常用。
- grab_screen.py:获取游戏屏幕图像,用于AI的视觉输入。
- run.py:入口脚本,整合以上组件启动AI游戏控制流程。
在实践中,开发者应查阅相应.py
文件中的函数定义和注释,了解如何调用这些模块以定制AI的行为。
四、项目安装方式
实际上,项目的“安装”更多指的是配置工作环境和准备项目的运行条件。上述“安装指南”部分已经覆盖了所有必要步骤,包括环境创建、依赖库的安装和项目准备工作。只需按照指导操作,即可成功设立开发环境,从而开始你的游戏AI之旅。
通过遵循本文档,您将能够顺利地设置环境,理解和运用“训练属于自己的游戏AI”项目,进而探索和开发出能在游戏世界中自主行动的智能体。祝您编程愉快!
train_your_own_game_AI 项目地址: https://gitcode.com/gh_mirrors/tr/train_your_own_game_AI
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考