BS-RoFormer音乐源分离技术文档

BS-RoFormer音乐源分离技术文档

BS-RoFormer Implementation of Band Split Roformer, SOTA Attention network for music source separation out of ByteDance AI Labs BS-RoFormer 项目地址: https://gitcode.com/gh_mirrors/bs/BS-RoFormer

BS-RoFormer是ByteDance AI Labs提出的用于音乐源分离的最先进的注意力网络实现。此模型通过轴向注意力在频率(多频带)和时间上操作,采用旋转位置编码显著提高了性能,并支持立体声音训练及多个音轨输出。以下是对该项目的详细技术文档。

安装指南

您可以通过pip轻松安装BS-RoFormer库:

pip install BS-RoFormer

确保您的Python环境已设置好,并且pip为最新版本。

项目使用说明

初始化模型

BS-RoFormer模型可以按需实例化,示例如下:

import torch
from bs_roformer import BSRoformer

# 创建一个BS-RoFormer模型实例
model = BSRoformer(dim=512, depth=12, time_transformer_depth=1, freq_transformer_depth=1)

# 输入数据预处理,此处的x应根据实际情况调整尺寸
x = torch.randn(2, 352800)  # 假设输入音频特征
target = torch.randn(2, 352800)  # 目标输出,如果是训练阶段必需

# 计算损失进行反向传播(仅在训练时需要)
loss = model(x, target=target)
loss.backward()

如果您想使用后续论文中的梅尔频带RoFormer(Mel-Band RoFormer),只需导入相应的类并创建模型:

from bs_roformer import MelBandRoformer

model = MelBandRoformer(dim=32, depth=1, time_transformer_depth=1, freq_transformer_depth=1)

运行预测

经过训练后,您可以使用模型进行预测:

# 假定已经过充分训练
output = model(x)

项目API使用文档

  • BSRoformerMelBandRoformer 类提供了主要接口,它们都接受模型参数如维度(dim)、深度(depth)等。
  • 模型的前向传递函数 .forward() 或简写的调用形式(如上述代码所示)接受输入张量 x 及可选的目标张量 target 用于训练过程中的损失计算。
  • 对于预测,直接调用模型实例即可得到输出,无需提供目标张量。

项目安装方式

再次强调,通过pip命令安装是最简便的方式:

pip install BS-RoFormer

确保您的开发环境兼容此版本库,并且Python版本至少为3.6。

此文档意在为开发者提供快速上手BS-RoFormer项目的基础指导。对于更深入的学习和应用,建议参考项目GitHub仓库中的具体实现细节和实验配置。参与社区讨论和技术交流,可通过Discord链接加入相关社群。

BS-RoFormer Implementation of Band Split Roformer, SOTA Attention network for music source separation out of ByteDance AI Labs BS-RoFormer 项目地址: https://gitcode.com/gh_mirrors/bs/BS-RoFormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑妙卿Edan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值