ComfyUI YoloWorld-EfficientSAM 技术文档
安装指南
使用 ComfyUI Manager 安装(即将推出)
- 正式支持通过ComfyUI Manager进行一键安装的方式还在开发中,请稍候。
手动安装步骤
-
克隆项目: 在ComfyUI的
custom_nodes
目录下执行以下命令:cd custom_nodes git clone https://github.com/ZHO-ZHO-ZHO/ComfyUI-YoloWorld-EfficientSAM.git
-
安装依赖: 切换到项目目录并安装Python依赖:
cd ComfyUI-YoloWorld-EfficientSAM pip install -r requirements.txt
-
下载模型: 访问Hugging Face下载
efficient_sam_s_cpu.jit
和efficient_sam_s_gpu.jit
, 确保将它们放置在custom_nodes/ComfyUI-YoloWorld-EfficientSAM
目录内。 -
重启ComfyUI: 完成上述步骤后,重启您的ComfyUI以确保节点正确加载。
项目使用说明
V2.0核心特性
- 图像与视频处理: 全新版本支持对图像和视频应用目标检测和分割。
- 蒙版操作: 引入蒙版分离和提取功能,可以单独输出特定蒙版。
- 定制配置: 用户可以根据需要调整如置信度阈值、IoU阈值等参数。
使用流程
-
导入工作流: 从V2.0的工作流文件中选择适合您需求的JSON文件导入ComfyUI。
-
配置节点: 根据项目需求,调整节点如YOLO-World ESAM中的各类参数,例如
confidence_threshold
,iou_threshold
等。 -
输入数据: 提供测试图片或视频作为输入,并设置相应的检测类别。
-
执行检测: 点击运行,查看目标检测和分割结果。
项目API使用文档
-
YOLO-World Model Loader
- 作用: 自动加载三种预训练模型之一(yolo_world/l, m, s)。
-
ESAM Model Loader
- 支持: 可选择CUDA加速或CPU模式运行。
-
YOLO-World ESAM
- 参数:
yolo_world_model
: 选择YOLO-World模型。esam_model
: 加载EfficientSAM模型。categories
: 设定检测目标类别。confidence_threshold
,iou_threshold
: 控制检测精度。with_segmentation
: 开启/关闭分割功能。- 更多详细参数见节点说明,支持高度自定义输出。
- 参数:
-
Yoloworld ESAM Detector Provider
- 新增特性: 提供额外集成选项,特别适配Impact-Pack。
项目安装方式(重复信息,参照安装指南)
已包含在上方的安装指南中,手动安装和未来计划通过ComfyUI Manager的安装方法皆有涉及。
通过遵循以上步骤,您可以成功部署并开始利用ComfyUI YoloWorld-EfficientSAM进行高效的目标检测和实例分割任务。记得,根据实际需求调整参数以优化您的应用体验。如有疑问,可通过提供的联系方式与开发者取得沟通。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考