BM25-Sparse(BM25S)快速入门指南和技术文档
安装指南
核心依赖安装
你可以通过pip轻松安装bm25s
库:
pip install bm25s
高级功能安装
为了充分利用.stemming进行词干提取以提高检索效果,可以安装额外依赖项:
pip install bm25s[full] PyStemmer jax[cpu]
这里PyStemmer
用于词干提取,而jax
则用于提升部分操作的速度。
使用说明
快速启动
bm25s
旨在简化文本检索任务,下面是基本用法示例:
import bm25s
# 示例语料库
corpus = [
"猫是喜欢咕噜的猫科动物。",
"狗,人类的好朋友,爱玩耍。",
"鸟,一种美丽的会飞的动物。",
]
# 创建BM25模型并索引语料库
retriever = bm25s.BM25()
retriever.index(bm25s.tokenize(corpus))
# 查询
query = "鱼像猫一样咕噜吗?"
query_tokens = bm25s.tokenize(query)
# 获取查询结果
results, scores = retriever.retrieve(query_tokens, k=2)
for rank, (doc_id, score) in enumerate(zip(results[0], scores[0]), start=1):
print(f"排名{rank} (得分: {score:.2f}): 文档{doc_id}")
索引与保存
你还可以保存和加载你的索引以便重用:
# 保存索引
retriever.save("我的BM25S索引")
# 加载索引
loaded_retriever = bm25s.BM25.load("我的BM25S索引")
API使用文档
初始化BM25模型
retriever = bm25s.BM25(k1=值, b=值, method="方法名")
其中k1
和b
是BM25算法的参数,method
可选值包括不同的BM25变体如"robertson"
, "atire"
, "bm25l"
, "bm25+"
, 和 "lucene"
。
索引语料库
retriever.index(tokenized_corpus)
查询与返回结果
results, scores = retriever.retrieve(query_tokens, corpus=原始语料库, k=2)
自定义设置
- 可定制token化过程,包括停用词列表和词干处理。
- 支持内存映射(
mmap=True
)加载大型索引以节省内存。
项目特点
- 速度:利用稀疏矩阵加速计算,显著超越同类库。
- 兼容性:仅依赖Numpy和Scipy,易集成到Python生态系统。
- 灵活性:支持多种BM25实现变体,自定义IDF方法。
- 效率:提供存储分数以加快查询响应时间。
- 简洁性:简单的API设计让新手也能快速上手。
- 扩展性:无缝整合Hugging Face模型仓库,便于分享模型。
记住,使用过程中查看官方文档和GitHub仓库中的实例代码将给你更深入的理解和应用启示。通过这些步骤,你应该能够高效地利用bm25s
进行文本检索任务了。