Webtoon Downloader 技术文档

Webtoon Downloader 技术文档

Webtoon-Downloader Webtoons Scraper able to download all chapters of any series wanted. Webtoon-Downloader 项目地址: https://gitcode.com/gh_mirrors/we/Webtoon-Downloader

1. 安装指南

兼容性

Webtoon Downloader 支持 Windows、Linux 和 OSX 操作系统。所需的最低 Python 版本为:

  • Python >= 3.7

安装步骤

  1. 克隆项目仓库
    git clone https://github.com/Zehina/Webtoon-Downloader.git
    
  2. 进入包含脚本的 src 文件夹
    cd Webtoon-Downloader
    cd src
    
  3. 安装所需的模块
    pip install -r requirements.txt
    

2. 项目使用说明

基本用法

  • 下载指定标题的所有章节
    $ python webtoon_downloader.py "www.webtoons.com/en/.../.../list?title_no=...&page=1"
    
  • 从第10章开始下载所有已发布的章节
    $ python webtoon_downloader.py [url] --start 10
    
  • 下载所有已发布的章节直到第150章
    $ python webtoon_downloader.py [url] --end 150
    
  • 下载第35章到第67章之间的所有章节
    $ python webtoon_downloader.py [url] --start 35 --end 67
    
  • 仅下载最新发布的章节
    $ python webtoon_downloader.py [url] --latest
    
  • 更改下载图片的格式
    $ python webtoon_downloader.py [url] --images-format 'png'
    
  • 默认情况下,下载的章节将存储在当前工作目录下,文件夹名为 [series_title]。例如,下载《Tower of God》第150章将生成以下结构:
    Tower_of_God
        │--150_001.jpg
        │--150_002.jpg
        │--150_003.jpg
        │...
    
  • 将下载的图片存储到指定文件夹
    $ python webtoon_downloader.py [url] --dest ./path/to/parent/folder/of/downloaded/images
    
  • 将每个章节的图片分别存储在单独的目录中
    $ python webtoon_downloader.py [url] --separate
    
  • 将每个章节的图片分别存储在单独的目录中,并压缩为 .cbz 文件
    $ python webtoon_downloader.py [url] --separate --cbz
    

帮助信息

使用 -h--help 参数获取更多详细信息:

py webtoon_downloader.py --help

3. 项目API使用文档

Webtoon Downloader 主要通过命令行参数进行操作,没有提供额外的 API 接口。所有功能均通过命令行参数实现,具体参数说明请参考上述“项目使用说明”部分。

4. 项目安装方式

项目安装方式已在“安装指南”部分详细说明,请按照以下步骤进行安装:

  1. 克隆项目仓库
  2. 进入 src 文件夹
  3. 安装所需的模块

Webtoon-Downloader Webtoons Scraper able to download all chapters of any series wanted. Webtoon-Downloader 项目地址: https://gitcode.com/gh_mirrors/we/Webtoon-Downloader

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧宁泉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值