表格检测与识别项目安装与配置指南
table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect
1. 项目基础介绍和主要编程语言
项目基础介绍
table-detect
是一个开源项目,旨在通过深度学习技术实现表格的检测与识别。该项目主要用于从图像中自动检测表格的位置,并进一步识别表格中的单元格内容,最终输出为Excel文件。
主要编程语言
该项目主要使用 Python 作为编程语言,并结合了深度学习框架进行模型训练和推理。
2. 项目使用的关键技术和框架
关键技术
- YOLO (You Only Look Once): 用于表格的检测。
- UNet: 用于表格单元格的定位和识别。
- TensorFlow 2: 作为深度学习框架,用于模型的训练和推理。
主要框架
- TensorFlow 2: 提供深度学习模型的训练和推理环境。
- LabelMe: 用于标注数据,生成训练所需的标签文件。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 安装Python: 确保你的系统中已经安装了Python 3.6或更高版本。
- 安装Git: 用于克隆项目代码。
- 安装依赖库: 项目依赖于多个Python库,包括TensorFlow、OpenCV等。
详细安装步骤
步骤1:克隆项目代码
首先,使用Git克隆项目代码到本地:
git clone https://github.com/chineseocr/table-detect.git
cd table-detect
步骤2:创建虚拟环境(可选)
为了隔离项目依赖,建议创建一个虚拟环境:
python -m venv table-detect-env
source table-detect-env/bin/activate # 在Windows上使用 `table-detect-env\Scripts\activate`
步骤3:安装依赖库
安装项目所需的Python依赖库:
pip install -r requirements.txt
步骤4:下载模型权重
下载预训练的模型权重文件,并将其放置在/models
目录下:
mkdir models
# 下载模型权重文件并放置在models目录中
步骤5:测试表格检测
运行以下命令测试表格检测功能:
python table_detect.py --jpgPath img/table-detect.jpg
步骤6:测试表格识别并输出到Excel
运行以下命令测试表格识别功能,并将结果输出到Excel文件:
python table_ceil.py --isToExcel True --jpgPath img/table-detect.jpg
步骤7:训练表格识别模型(可选)
如果你有标注好的数据,可以使用LabelMe进行标注,并使用以下命令训练表格识别模型:
python train/train.py
总结
通过以上步骤,你可以成功安装并配置table-detect
项目,开始进行表格的检测与识别。希望这篇指南对你有所帮助!
table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect