表格检测与识别项目安装与配置指南

表格检测与识别项目安装与配置指南

table-detect table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect

1. 项目基础介绍和主要编程语言

项目基础介绍

table-detect 是一个开源项目,旨在通过深度学习技术实现表格的检测与识别。该项目主要用于从图像中自动检测表格的位置,并进一步识别表格中的单元格内容,最终输出为Excel文件。

主要编程语言

该项目主要使用 Python 作为编程语言,并结合了深度学习框架进行模型训练和推理。

2. 项目使用的关键技术和框架

关键技术

  • YOLO (You Only Look Once): 用于表格的检测。
  • UNet: 用于表格单元格的定位和识别。
  • TensorFlow 2: 作为深度学习框架,用于模型的训练和推理。

主要框架

  • TensorFlow 2: 提供深度学习模型的训练和推理环境。
  • LabelMe: 用于标注数据,生成训练所需的标签文件。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 安装Python: 确保你的系统中已经安装了Python 3.6或更高版本。
  2. 安装Git: 用于克隆项目代码。
  3. 安装依赖库: 项目依赖于多个Python库,包括TensorFlow、OpenCV等。

详细安装步骤

步骤1:克隆项目代码

首先,使用Git克隆项目代码到本地:

git clone https://github.com/chineseocr/table-detect.git
cd table-detect
步骤2:创建虚拟环境(可选)

为了隔离项目依赖,建议创建一个虚拟环境:

python -m venv table-detect-env
source table-detect-env/bin/activate  # 在Windows上使用 `table-detect-env\Scripts\activate`
步骤3:安装依赖库

安装项目所需的Python依赖库:

pip install -r requirements.txt
步骤4:下载模型权重

下载预训练的模型权重文件,并将其放置在/models目录下:

mkdir models
# 下载模型权重文件并放置在models目录中
步骤5:测试表格检测

运行以下命令测试表格检测功能:

python table_detect.py --jpgPath img/table-detect.jpg
步骤6:测试表格识别并输出到Excel

运行以下命令测试表格识别功能,并将结果输出到Excel文件:

python table_ceil.py --isToExcel True --jpgPath img/table-detect.jpg
步骤7:训练表格识别模型(可选)

如果你有标注好的数据,可以使用LabelMe进行标注,并使用以下命令训练表格识别模型:

python train/train.py

总结

通过以上步骤,你可以成功安装并配置table-detect项目,开始进行表格的检测与识别。希望这篇指南对你有所帮助!

table-detect table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟熠榕Belinda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值