Netflix 4K DDplus 扩展下载及安装教程

Netflix 4K DDplus 扩展下载及安装教程

netflix-4K-DDplus MicrosoftEdge(Chromium core) extension to play Netflix in 4K(Restricted)and DDplus audio netflix-4K-DDplus 项目地址: https://gitcode.com/gh_mirrors/ne/netflix-4K-DDplus

1. 项目介绍

Netflix 4K DDplus 是一个基于 Microsoft Edge (Chromium 内核) 的扩展程序,旨在提供在 Netflix 上播放 4K 视频和 DDplus 音频的功能。该扩展允许用户在受限条件下享受高清视频和音频体验。

2. 项目下载位置

要下载 Netflix 4K DDplus 扩展,请访问项目的 GitHub 仓库。您可以通过以下步骤进行下载:

  1. 打开浏览器并访问 GitHub 网站。
  2. 在搜索栏中输入 lkmvip/netflix-4K-DDplus
  3. 进入项目主页后,点击右上角的 Code 按钮。
  4. 选择 Download ZIP 选项,下载项目的压缩包。

3. 项目安装环境配置

3.1 系统要求

  • 操作系统:Windows 11 或更高版本
  • 浏览器:Microsoft Edge (Chromium 内核)

3.2 环境配置步骤

  1. 安装 Microsoft Edge 浏览器

    • 如果您尚未安装 Microsoft Edge 浏览器,请访问 Microsoft 官方网站下载并安装。
  2. 启用开发者模式

    • 打开 Microsoft Edge 浏览器。
    • 点击右上角的菜单按钮(三个点),选择 扩展
    • 在扩展管理页面,启用 开发者模式

3.3 环境配置示例

启用开发者模式

4. 项目安装方式

  1. 解压下载的 ZIP 文件

    • 找到您下载的 netflix-4K-DDplus.zip 文件,右键点击并选择 解压到当前文件夹
  2. 加载扩展

    • 打开 Microsoft Edge 浏览器,进入扩展管理页面。
    • 点击 加载解压缩的扩展 按钮。
    • 选择解压后的 netflix-4K-DDplus 文件夹,点击 选择文件夹
  3. 确认安装

    • 安装完成后,您将在扩展列表中看到 Netflix 4K DDplus 扩展。

5. 项目处理脚本

Netflix 4K DDplus 扩展包含多个处理脚本,用于优化视频和音频播放。以下是主要脚本的简要介绍:

  • content_script.js:用于处理页面内容,确保视频和音频以最佳质量播放。
  • netflix_max_bitrate.js:用于设置 Netflix 的最大比特率,以确保 4K 视频的流畅播放。
  • rules.json:包含扩展的配置规则,用于调整视频和音频的设置。

通过以上步骤,您可以成功下载并安装 Netflix 4K DDplus 扩展,享受高清视频和音频体验。

netflix-4K-DDplus MicrosoftEdge(Chromium core) extension to play Netflix in 4K(Restricted)and DDplus audio netflix-4K-DDplus 项目地址: https://gitcode.com/gh_mirrors/ne/netflix-4K-DDplus

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农珑联Kyla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值