KubeRay:在Kubernetes上运行Ray应用的强大工具

KubeRay:在Kubernetes上运行Ray应用的强大工具

kuberay A toolkit to run Ray applications on Kubernetes kuberay 项目地址: https://gitcode.com/gh_mirrors/ku/kuberay

项目基础介绍和主要编程语言

KubeRay是一个开源的Kubernetes操作员,旨在简化在Kubernetes上部署和管理Ray应用的过程。该项目主要使用Go语言进行开发,同时也涉及Python、Makefile、Shell、Mustache、Dockerfile和Smarty等多种编程语言和技术。

项目核心功能

KubeRay的核心功能包括:

  1. KubeRay核心组件:提供三个自定义资源定义(CRD),分别是RayCluster、RayJob和RayService。这些资源帮助用户轻松运行各种工作负载。

    • RayCluster:KubeRay完全管理RayCluster的生命周期,包括集群的创建/删除、自动扩展和故障容错。
    • RayJob:KubeRay自动创建RayCluster并在集群就绪时提交作业,还可以配置RayJob在作业完成后自动删除RayCluster。
    • RayService:由RayCluster和Ray Serve部署图组成,提供RayCluster的零停机升级和高可用性。
  2. 社区维护组件(可选)

    • KubeRay APIServer:提供简化的配置层,用于管理KubeRay资源,常用于支持用户界面的后端。
    • KubeRay Python客户端:提供API,用于从Python应用程序中处理RayCluster。
    • KubeRay CLI:通过命令行界面管理KubeRay资源。
项目最近更新的功能

截至2023年9月,KubeRay的最新更新包括:

  1. 文档迁移:所有面向用户的KubeRay文档已迁移到Ray文档中,KubeRay仓库仅保留与开发和维护相关的文档。
  2. 快速启动指南:新增了RayCluster、RayJob和RayService的快速启动指南。
  3. 示例应用:增加了多个示例应用,如在Kubernetes上使用Ray Train进行XGBoost训练、PyTorch ResNet模型训练、MobileNet图像分类器服务、StableDiffusion文本到图像模型服务等。
  4. Kubernetes生态系统集成:包括与AWS Application Load Balancer、GKE Ingress、Nginx、Prometheus和Grafana、Volcano、Kubeflow、MCAD等的集成。
  5. 外部博客文章和演讲:增加了多个外部博客文章和演讲,涵盖了KubeRay在不同公司的应用案例和技术分享。

KubeRay通过这些更新,进一步增强了其在Kubernetes上运行Ray应用的能力,提供了更丰富的功能和更好的用户体验。

kuberay A toolkit to run Ray applications on Kubernetes kuberay 项目地址: https://gitcode.com/gh_mirrors/ku/kuberay

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计嫱甜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值