多通道语音分离、降噪与去混响技术文档

多通道语音分离、降噪与去混响技术文档

NBSS NBSS 项目地址: https://gitcode.com/gh_mirrors/nb/NBSS

本技术文档旨在为用户提供详细指导,以便理解和应用基于PyTorch的多通道语音处理项目。该项目围绕一系列研究论文展开,重点是使用深度学习进行复杂的音频信号处理任务。

安装指南

在开始之前,确保您的环境已经配置了Python,并且建议安装最新版本的PyTorch以获得最佳性能。通过以下命令安装必要的依赖项:

pip install -r requirements.txt

此外,您还需要安装用于生成房间脉冲响应(gpuRIR)的库,详情参考其GitHub仓库:DavidDiazGuerra/gpuRIR

项目使用说明

此项目专注于实现多种多通道语音处理算法,如文中提到的[NB-BLSTM][1], [NBC][2], [NBC2][3], 和 [SpatialNet][4]。核心功能包括训练和测试自定义网络模型来执行语音分离、降噪和去混响。

数据集准备

为了使用例如[SpatialNet][4]进行实验,需要生成或使用特定的数据集,如SMS-WSJ_plus。遵循这些步骤生成所需的房间脉冲响应(RIRs):

CUDA_VISIBLE_DEVICES=0 python generate_rirs.py --rir_dir ~/datasets/SMS_WSJ_Plus_rirs --save_to configs/datasets/sms_wsj_rir_cfg.npz
cp configs/datasets/sms_wsj_plus_diffuse.npz ~/datasets/SMS_WSJ_Plus_rirs/diffuse.npz

对于基本的SMS-WSJ数据集,可以访问:fgnt/sms_wsj获取更多信息。

训练与测试

项目利用了pytorch-lightning框架。了解其命令行接口(CLI)将对您非常有帮助,可参考相关文档

训练模型

要训练SpatialNet模型,使用以下命令(记得替换相应的配置路径和参数):

python SharedTrainer.py fit \
    --config=configs/SpatialNet.yaml \
    --config=configs/datasets/sms_wsj_plus.yaml \
    --trainer.devices=0 \
    --max_epochs=100
模型测试

完成训练后,使用以下命令测试模型性能,其中version_xepochY_neg_si_sdrZ需替换成实际的版本号和检查点文件名:

python SharedTrainer.py test \
    --config=logs/SpatialNet/version_x/config.yaml \
    --ckpt_path=logs/SpatialNet/version_x/checkpoints/epochY_neg_si_sdrZ.ckpt \
    --trainer.devices=0

模块版本信息

  • NB-BLSTM/NBC/NBC2: 在models/arch/NBSS.py中定义。
  • SpatialNet: 查看models/arch/SpatialNet.py
  • 在线SpatialNet: 实现位于models/arch/OnlineSpatialNet.py

注意事项

  • 针对NB-BLSTM/NBC/NBC2模型的特殊命令和设置,请切换到NBSS分支。
  • 确保所有路径指向正确,特别是在恢复训练或测试时指定的配置文件和检查点路径。

通过上述步骤,您可以成功地运行并试验这个强大的多通道语音处理工具包,进一步探索并优化其在不同应用场景下的表现。

NBSS NBSS 项目地址: https://gitcode.com/gh_mirrors/nb/NBSS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴念韶Monica

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值