Howl 开源项目下载与安装教程

Howl 开源项目下载与安装教程

howl Wake word detection modeling toolkit for Firefox Voice, supporting open datasets like Speech Commands and Common Voice. howl 项目地址: https://gitcode.com/gh_mirrors/how/howl

1. 项目介绍

Howl 是一个用于 Firefox Voice 的唤醒词检测建模工具包,它支持诸如 Google Speech Commands 和 Mozilla Common Voice 等开放数据集。这个项目由 Raphael Tang 等人开发,并在《Second Workshop for NLP Open Source Software (NLP-OSS)》会议上发表。Howl 提供了一个开源、可部署的唤醒词系统,使开发者能够训练自己的唤醒词模型。

2. 项目下载位置

项目托管在 GitHub 上,您可以通过以下链接访问并下载:

[访问 Howl 在 GitHub](https://github.com/castorini/howl)

3. 项目安装环境配置

环境要求:

  • Python 3.x
  • PyTorch
  • PyAudio 及其依赖项
  • Montreal Forced Aligner (MFA)

图片示例: 由于无法直接插入图片,以下是文字描述的配置步骤概览:

  1. Python: 确保您的系统已安装 Python 3.6 或更高版本。
  2. 虚拟环境建议:创建一个虚拟环境以隔离项目依赖。可以使用 python3 -m venv my_howl_env 创建环境,然后通过 source my_howl_env/bin/activate 激活。

配置步骤图解(文字描述):

  1. 打开终端或命令提示符。
  2. 使用 git clone https://github.com/castorini/howl.git 命令克隆仓库到本地。
  3. 进入项目目录:cd howl
  4. 安装必要的 Python 包:使用 pip install -r requirements.txt -r requirements_training.txt
  5. 安装 PyAudio: 根据操作系统进行相应安装,例如,在 Ubuntu 上使用 sudo apt-get install portaudio19-dev 然后再次运行 pip 安装。
  6. 安装 MFA: 运行项目中的 download_mfa.sh 脚本来自动下载和设置 MFA。

4. 项目安装方式

在完成环境配置后,主要的安装步骤已经完成。接下来是关于如何准备项目运行环境:

# 如果未安装 MFA,请先运行此命令
./download_mfa.sh

确保所有依赖都正确安装,特别是 MFA,因为生成自定义唤醒词的数据集需要它。

5. 项目处理脚本

数据集生成示例脚本:

./generate_dataset.sh <Common Voice数据集路径> <下划线分隔的唤醒词如 hey_fire_fox> <推理序列>

训练模型示例脚本:

首先,激活你的虚拟环境,并配置相关环境变量,例如:

source envs/res8.env

然后,执行训练命令:

python -m training.run.train -i datasets/fire/positive datasets/fire/negative --model res8 --workspace workspaces/fire-res8

或者使用简化版脚本:

./train_model.sh envs/res8.env res8 workspaces/fire-res8 datasets/fire-positive datasets/fire-negative

以上就是 Howl 项目的下载与基本安装流程。请注意,实际操作时应参照项目文档与具体错误信息调整步骤。

howl Wake word detection modeling toolkit for Firefox Voice, supporting open datasets like Speech Commands and Common Voice. howl 项目地址: https://gitcode.com/gh_mirrors/how/howl

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阮真继Frederica

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值