Howl 开源项目下载与安装教程
1. 项目介绍
Howl 是一个用于 Firefox Voice 的唤醒词检测建模工具包,它支持诸如 Google Speech Commands 和 Mozilla Common Voice 等开放数据集。这个项目由 Raphael Tang 等人开发,并在《Second Workshop for NLP Open Source Software (NLP-OSS)》会议上发表。Howl 提供了一个开源、可部署的唤醒词系统,使开发者能够训练自己的唤醒词模型。
2. 项目下载位置
项目托管在 GitHub 上,您可以通过以下链接访问并下载:
[访问 Howl 在 GitHub](https://github.com/castorini/howl)
3. 项目安装环境配置
环境要求:
- Python 3.x
- PyTorch
- PyAudio 及其依赖项
- Montreal Forced Aligner (MFA)
图片示例: 由于无法直接插入图片,以下是文字描述的配置步骤概览:
- Python: 确保您的系统已安装 Python 3.6 或更高版本。
- 虚拟环境建议:创建一个虚拟环境以隔离项目依赖。可以使用
python3 -m venv my_howl_env
创建环境,然后通过source my_howl_env/bin/activate
激活。
配置步骤图解(文字描述):
- 打开终端或命令提示符。
- 使用
git clone https://github.com/castorini/howl.git
命令克隆仓库到本地。 - 进入项目目录:
cd howl
。 - 安装必要的 Python 包:使用
pip install -r requirements.txt -r requirements_training.txt
。 - 安装 PyAudio: 根据操作系统进行相应安装,例如,在 Ubuntu 上使用
sudo apt-get install portaudio19-dev
然后再次运行pip
安装。 - 安装 MFA: 运行项目中的
download_mfa.sh
脚本来自动下载和设置 MFA。
4. 项目安装方式
在完成环境配置后,主要的安装步骤已经完成。接下来是关于如何准备项目运行环境:
# 如果未安装 MFA,请先运行此命令
./download_mfa.sh
确保所有依赖都正确安装,特别是 MFA,因为生成自定义唤醒词的数据集需要它。
5. 项目处理脚本
数据集生成示例脚本:
./generate_dataset.sh <Common Voice数据集路径> <下划线分隔的唤醒词如 hey_fire_fox> <推理序列>
训练模型示例脚本:
首先,激活你的虚拟环境,并配置相关环境变量,例如:
source envs/res8.env
然后,执行训练命令:
python -m training.run.train -i datasets/fire/positive datasets/fire/negative --model res8 --workspace workspaces/fire-res8
或者使用简化版脚本:
./train_model.sh envs/res8.env res8 workspaces/fire-res8 datasets/fire-positive datasets/fire-negative
以上就是 Howl 项目的下载与基本安装流程。请注意,实际操作时应参照项目文档与具体错误信息调整步骤。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考