使用 PaECTER 提高专利检索的效率

使用 PaECTER 提高专利检索的效率

paecter paecter 项目地址: https://gitcode.com/mirrors/mpi-inno-comp/paecter

在当今知识经济时代,专利信息作为一种重要的知识产权,对于企业、研究机构和创新工作者来说,具有极高的价值。专利检索是专利分析和利用的关键环节,它可以帮助我们快速定位相关技术领域的重要文献,为研发和创新提供有力支持。然而,传统的专利检索方法往往存在效率低下、检索结果不够准确等问题。本文将介绍如何使用 PaECTER 模型来提高专利检索的效率。

当前挑战

传统的专利检索方法主要依赖于关键词匹配和布尔逻辑搜索。这些方法虽然简单易用,但在面对大规模专利数据库时,往往因为以下几个原因导致效率低下:

  1. 关键词匹配的局限性:仅依赖于关键词的匹配,容易忽视语义上的相似性,导致相关但未包含关键词的专利被遗漏。
  2. 检索结果过多:布尔逻辑搜索往往返回大量结果,需要人工逐一筛选,耗时耗力。
  3. 语义理解不足:传统方法难以理解专利文本中的复杂语义关系,影响检索的准确性。

模型的优势

PaECTER(Patent Embeddings using Citation-informed TransformERs)是一种基于深度学习的专利相似性模型。它通过将专利文本转换为1024维的稠密向量表示,捕捉文本的语义 essence,从而在专利检索等任务中展现出以下优势:

  1. 语义理解能力:PaECTER 模型能够理解专利文本中的复杂语义关系,提高检索的准确性和相关性。
  2. 高效检索:通过计算专利向量之间的相似度,模型能够快速定位到最相关的专利,减少人工筛选的工作量。
  3. 适应性强:PaECTER 模型可以应用于不同的专利检索任务,如语义搜索、现有技术搜索、聚类和专利布局等。

实施步骤

要使用 PaECTER 模型提高专利检索效率,以下是几个关键的实施步骤:

  1. 模型集成:首先,需要集成 PaECTER 模型到现有的专利检索系统中。可以使用 sentence-transformers 库简化集成过程。

    from sentence_transformers import SentenceTransformer
    
    model = SentenceTransformer('mpi-inno-comp/paecter')
    
  2. 参数配置:根据具体的应用场景,合理配置模型参数,如批量大小、损失函数和学习率等。

  3. 向量计算:对专利文本进行编码,得到向量表示。

    sentences = ["This is an example sentence", "Each sentence is converted"]
    embeddings = model.encode(sentences)
    
  4. 相似度计算:通过计算向量之间的相似度,实现高效的专利检索。

效果评估

在实际应用中,PaECTER 模型展现出了以下效果:

  1. 性能对比数据:在多个专利检索任务中,PaECTER 模型的检索准确性和效率均优于传统方法。
  2. 用户反馈:用户普遍反映使用 PaECTER 模型后,检索过程更加快速、准确,大大减轻了人工筛选的负担。

结论

PaECTER 模型作为一种先进的专利相似性模型,能够显著提高专利检索的效率。通过集成 PaECTER 模型到专利检索系统中,我们可以实现更快速、准确的检索,为专利分析和利用提供有力支持。我们鼓励更多的企业和研究机构尝试将 PaECTER 模型应用于实际工作中,以提升创新效率。

paecter paecter 项目地址: https://gitcode.com/mirrors/mpi-inno-comp/paecter

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昌颉昂Champion

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值