去雾算法AODNet PyTorch雾天数据集下载
简介
本资源文件提供了用于去雾算法AODNet的PyTorch雾天数据集下载链接。AODNet是一种轻量但有效的端到端除雾神经网络,适用于雾霾图像的去雾处理。
数据集内容
- 图像来源:数据集从NYU2数据集中选择了500个室内图像,并按照与训练数据相同的过程来合成模糊图像。
- 图像数量:包含500对合成模糊图像及其对应的清晰图像。
- 图像特性:为了测试算法的鲁棒性,数据集中还包含了具有挑战性的去雾情况,如添加了浓雾的白色场景。
使用方法
- 下载数据集:通过提供的下载链接获取数据集文件。
- 解压文件:将下载的压缩文件解压到本地目录。
- 加载数据:在PyTorch项目中加载数据集,用于训练或测试AODNet模型。
数据集结构
数据集文件夹结构如下:
data/
├── hazy_images/
│ ├── hazy_image_1.png
│ ├── hazy_image_2.png
│ └── ...
└── clear_images/
├── clear_image_1.png
├── clear_image_2.png
└── ...
参考文献
- AOD-Net: AOD-Net是一种轻量但有效的端到端除雾神经网络,适用于雾霾图像的去雾处理。
- NYU2数据集: 数据集从NYU2数据集中选择了500个室内图像,并按照与训练数据相同的过程来合成模糊图像。
注意事项
- 数据集仅供学习和研究使用,请勿用于商业用途。
- 数据集下载链接可能会失效,请及时下载并保存。
联系我们
如有任何问题或建议,请联系我们。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考