Model Predictive Control 理论、计算与设计
书籍简介
《Model Predictive Control: Theory, Computation, and Design》第二版,由James B. Rawlings, David Q. Mayne以及Moritz M. Diehl联合编著。本书是针对工程领域研究生的权威教程,尤其适合那些尚未学习系统课程或已经完成初步系统课程的学习者。第1章作为入门,不仅为新手提供了复习,也预先介绍了后续非线性及约束问题处理的逻辑基础,通过仅使用可以扩展到非线性和受限情况的论证来推导线性二次调节器和最优卡尔曼滤波的所有结果。
从第2章到第4章构成了坚实的基础,涵盖了在任何高级MPC课程中可能涉及的关键内容。这些章节分别深入探讨了非线性受限系统的原点调节、基于管束轨迹的鲁棒MPC设计以提高控制器稳健性,以及侧重于移动视界估计的状态估计算法,包括扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波等技术。
接下来的第5至第7章则涉及更为专业的话题,如基于输出测量而非状态测量的MPC特殊需求、大型系统分布式MPC控制器的设计方法,以及受限线性系统的显式最优控制。这三章的内容选择可根据教师或学生的具体研究兴趣进行调整。
此外,附录部分精心整合了必要的数学背景(附录A)、稳定性分析的关键结果(附录B,包含不同类型的稳定性及李雅普诺夫函数理论)和来自优化理论的相关成果(附录C),旨在让读者无需遍寻广泛的科研文献即可掌握书中的基本论证。
本书不仅是学习Model Predictive Control领域的宝贵资料,也是研究人员和工程师的重要参考工具,全面而深刻地解析了这一自动化控制领域的前沿技术和理论。