Discrete-Time Signal Processing - 第三版

Discrete-Time Signal Processing - 第三版

【下载地址】Discrete-TimeSignalProcessing-第三版分享 本书《Discrete-Time Signal Processing》是由信号处理领域权威专家Alan V. Oppenheim和Ronald W. Schafer合著的第三国际版。这是一本在数字信号处理领域的经典教材,广泛应用于高等院校电子信息、通信工程等相关专业的教学与研究之中。该书深入浅出地介绍了离散时间信号处理的基本理论、方法和技术,包括信号采样、傅里叶变换、滤波器设计、谱分析以及现代信号处理的各种高级主题 【下载地址】Discrete-TimeSignalProcessing-第三版分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/a0278

资源简介

本书《Discrete-Time Signal Processing》是由信号处理领域权威专家Alan V. Oppenheim和Ronald W. Schafer合著的第三国际版。这是一本在数字信号处理领域的经典教材,广泛应用于高等院校电子信息、通信工程等相关专业的教学与研究之中。该书深入浅出地介绍了离散时间信号处理的基本理论、方法和技术,包括信号采样、傅里叶变换、滤波器设计、谱分析以及现代信号处理的各种高级主题。

内容亮点

  • 全面覆盖:从基础概念到复杂算法,提供了离散时间信号处理的全面指导。
  • 理论与实践结合:不仅注重理论深度,同时通过实例和应用展示如何将理论应用于实际问题解决。
  • 最新技术探讨:第三版更新了最新的研究成果和行业趋势,使读者能够接触到信号处理领域的前沿知识。
  • 习题丰富:书中包含大量习题,有助于读者巩固理解,适合自我测试和课堂教学。

目标读者

  • 高校电子工程、信息科学、计算机科学等专业的学生。
  • 从事信号处理、通信技术、音频视频处理相关工作的工程师和研究人员。
  • 对数字信号处理有兴趣的自学者和专业人士。

使用说明

阅读此PDF文档前,请确保您的阅读软件支持PDF格式,并且建议使用最新版本以获得最佳阅读体验。此书籍适合作为学习材料,配合相关课程或自学计划进行系统性学习。

请注意,尊重知识产权,合理使用资源。若用于学术目的,请参考正式出版物引用规范,支持正版图书。


通过研读这本书,无论是初学者还是进阶者,都能在离散时间信号处理这一深奥而实用的领域找到自己的立足之地,开启探索数字信号处理世界的精彩旅程。

【下载地址】Discrete-TimeSignalProcessing-第三版分享 本书《Discrete-Time Signal Processing》是由信号处理领域权威专家Alan V. Oppenheim和Ronald W. Schafer合著的第三国际版。这是一本在数字信号处理领域的经典教材,广泛应用于高等院校电子信息、通信工程等相关专业的教学与研究之中。该书深入浅出地介绍了离散时间信号处理的基本理论、方法和技术,包括信号采样、傅里叶变换、滤波器设计、谱分析以及现代信号处理的各种高级主题 【下载地址】Discrete-TimeSignalProcessing-第三版分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/a0278

### 回答1: 离散时间信号处理概率密度函数(PDF)是用来描述离散时间信号概率分布的函数。离散时间信号处理是指对离散时间信号进行分析、变换、滤波等操作的过程。 概率密度函数是对随机变量概率分布的描述,表示在一定的取值范围内,随机变量取不同值的概率密度。对于离散时间信号,其取值是离散的,因此概率密度函数描述的是不同取值的概率。 离散时间信号处理中常用的一种概率密度函数是离散概率函数(PMF),它描述了信号取各个离散值的概率。例如,在一个二进制数字序列中,每个数字只能取0或1,离散概率函数描述了0和1分别出现的概率。 在离散时间信号处理中,我们可以通过计算概率密度函数对信号进行统计分析。例如,可以计算信号的均值、方差、峰值等统计指标,帮助我们理解信号的特性和性质。 此外,在离散时间信号处理中,我们还可以利用概率密度函数进行信号压缩、去噪、特征提取等操作。通过分析信号的概率分布,我们可以选择合适的信号处理方法,以提高信号处理的效果。 总之,离散时间信号处理的概率密度函数是对信号概率分布的描述,它提供了分析、处理离散时间信号的重要工具和方法。通过对信号的概率分布进行统计分析和处理,我们可以更好地理解信号的特性,以及采取相应的措施改善信号质量。 ### 回答2: 离散时间信号处理(Discrete-time signal processing)PDF(概率密度函数)是描述离散时间信号统计特性的函数。在离散时间信号处理中,我们常常关注信号的概率分布,用以分析信号的时域和频域特性。 PDF描述了离散时间信号在每个取值点上的概率密度。对于离散时间信号而言,每个取值点都有一个对应的概率值。通过统计每个取值点的概率密度,我们能够了解信号的波形特征。 离散时间信号处理中,PDF有着广泛的应用。首先,通过PDF,我们可以计算信号的均值和方差,从而描述信号的集中趋势和离散程度。其次,借助PDF,我们可以得到信号的分布情况,进而探究信号的周期性、周期特性以及概率分布特性。此外,PDF还能够帮助我们判断信号的特征是否满足某些假设条件,比如高斯分布假设。 离散时间信号处理的PDF通常使用离散的样本来估计连续的概率密度函数。我们可以通过样本信号的直方图来表示概率分布,并利用概率质量函数(pmf)对样本进行参数估计。基于这些估计值,我们可以推断出真实信号的概率分布特性。 总的来说,离散时间信号处理的PDF对于分析信号的统计特性和概率分布提供了重要的工具。通过研究PDF,我们可以更好地理解信号的时域和频域特性,并为后续的信号处理算法和方法提供支持。 ### 回答3: 离散时间信号处理(Discrete-time Signal Processing)的概率密度函数(Probability Density Function,PDF)是用来描述信号在离散时间上的分布特性的函数。 离散时间信号处理是指对离散时间信号进行各种处理和分析的技术和方法。离散时间信号指的是在离散时间点上取值的信号,通常以序列的形式表示。而概率密度函数是用来描述随机变量的取值在某个区间内出现的概率的函数。 离散时间信号处理中,概率密度函数可以用于描述信号的统计特性和分布情况。通过分析信号的概率密度函数,可以了解信号的均值、方差、偏度、峰度等统计参数,进一步揭示信号的特征和规律。 在具体应用中,概率密度函数可以用于信号的分类、识别和估计等问题。通过比较不同信号的概率密度函数,可以判断信号之间的相似性和差异性,实现信号的分类和识别。同时,概率密度函数还可以用于信号参数的估计,通过对信号的采样和建模,可以根据信号的概率密度函数对信号参数进行估计和推测。 总之,离散时间信号处理中的概率密度函数是一个重要的工具和方法,用于描述和分析信号的分布特性和统计参数。通过对信号的概率密度函数的研究,可以更好地理解和处理离散时间信号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杜文岱Igor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值