基于深度学习的目标检测研究进展
本文档详细介绍了当前目标检测领域的主流方法,深入探讨了深度学习技术在目标检测任务中的应用与发展。文章内容系统全面,是不可多得的高质量学术资源,适合从事计算机视觉、深度学习等领域研究的学者和技术人员阅读学习。
文章简介
文章首先概述了目标检测的发展历程,随后重点讲解了以下几种主流目标检测方法:
- 基于R-CNN系列的目标检测方法
- 基于Fast R-CNN/Faster R-CNN的检测方法
- 基于SSD(Single Shot MultiBox Detector)的检测方法
- 基于YOLO(You Only Look Once)的检测方法
- 基于EfficientDet的轻量级目标检测方法
文章不仅阐述了每种方法的原理和特点,还对比分析了它们的性能,为研究人员提供了方法选择的参考。
使用指南
请使用下载工具获取该资源文件,文件格式为PDF,可直接使用Adobe Acrobat Reader等软件打开阅读。
版权声明
本文档所提供的资源仅用于学术交流目的,未经允许不得用于商业用途。如需引用或转发,请尊重原作者的知识产权,遵守相关法律法规。
希望这篇文章能够帮助您更好地理解目标检测领域的最新进展,为您的学术研究或技术应用提供支持。