MATLAB智能算法30个案例分析——源代码

MATLAB智能算法30个案例分析——源代码

【下载地址】MATLAB智能算法30个案例分析源代码 探索MATLAB智能算法的强大功能,本开源项目汇集了《MATLAB智能算法30个案例分析》一书中的所有源代码,涵盖遗传算法、神经网络、非线性规划等前沿技术。通过丰富的实践案例,您将深入理解智能算法的理论基础并掌握其实际应用。无论是优化函数设计、神经网络训练,还是解决复杂的旅行商问题,这些代码都将为您提供宝贵的参考和启发。适合具备一定MATLAB基础的开发者,助您在智能算法领域快速提升实战能力。 【下载地址】MATLAB智能算法30个案例分析源代码 项目地址: https://gitcode.com/Universal-Tool/c9d2f

简介

本仓库包含《MATLAB智能算法30个案例分析》一书中所有案例的源代码。这本书详细介绍了MATLAB在智能算法中的应用,内容覆盖遗传算法、神经网络、非线性规划等多个领域。本书源代码旨在帮助读者更好地理解理论基础,通过实践案例来掌握MATLAB智能算法的应用。

内容概述

  • 第1章:介绍谢菲尔德大学的MATLAB遗传算法工具箱,包括理论基础、案例背景、MATLAB程序实现等。
  • 第2章:讲解基于遗传算法和非线性规划的函数寻优算法,提供案例背景、遗传算法实现及MATLAB程序实现。
  • 第3章:基于遗传算法的BP神经网络优化算法,涉及理论基础、案例背景、神经网络算法等。
  • 第4章:探讨基于遗传算法的TSP算法,包括理论基础、案例背景、适应度函数、选择操作等。
  • 第5章:详细讲解基于遗传算法的LQR控制器优化设计,从理论基础到解题思路及步骤。
  • 第6章第13章:内容涵盖遗传算法工具箱应用、多种群遗传算法、量子遗传算法、多目标优化算法、粒子群算法等多个高级主题。

使用说明

  • 解压下载的MATLAB智能算法30个案例分析——源代码.rar文件。
  • 使用MATLAB软件打开相应的.m文件进行代码运行和调试。
  • 部分案例可能需要MATLAB特定工具箱支持。

注意事项

  • 本源代码不适合MATLAB初学者,涉及较深的数学建模知识。
  • 请确保在遵守相关学术规范和版权法的前提下使用本源代码。

版权信息

本书及源代码仅用于学习和研究目的,未经版权方允许不得用于商业用途。如有版权问题,请联系版权方。


请根据实际需要使用和参考本源代码,祝您学习愉快!

【下载地址】MATLAB智能算法30个案例分析源代码 探索MATLAB智能算法的强大功能,本开源项目汇集了《MATLAB智能算法30个案例分析》一书中的所有源代码,涵盖遗传算法、神经网络、非线性规划等前沿技术。通过丰富的实践案例,您将深入理解智能算法的理论基础并掌握其实际应用。无论是优化函数设计、神经网络训练,还是解决复杂的旅行商问题,这些代码都将为您提供宝贵的参考和启发。适合具备一定MATLAB基础的开发者,助您在智能算法领域快速提升实战能力。 【下载地址】MATLAB智能算法30个案例分析源代码 项目地址: https://gitcode.com/Universal-Tool/c9d2f

MATLAB智能算法源代码%% 清空环境 clc;clear %% 障碍物数据 position = load('barrier.txt'); plot([0,200],[0,200],'.'); hold on B = load('barrier.txt'); xlabel('km','fontsize',12) ylabel('km','fontsize',12) title('二维规划空间','fontsize',12) %% 描述起点和终点 S = [20,180]; T = [160,90]; plot([S(1),T(1)],[S(2),T(2)],'.'); % 图形标注 text(S(1)+2,S(2),'S'); text(T(1)+2,T(2),'T'); %% 描绘障碍物图形 fill(position(1:4,1),position(1:4,2),[0,0,0]); fill(position(5:8,1),position(5:8,2),[0,0,0]); fill(position(9:12,1),position(9:12,2),[0,0,0]); fill(position(13:15,1),position(13:15,2),[0,0,0]); % 下载链路端点数据 L = load('lines.txt'); %% 描绘线及中点 v = zeros(size(L)); for i=1:20 plot([position(L(i,1),1),position(L(i,2),1)],[position(L(i,1),2)... ,position(L(i,2),2)],'color','black','LineStyle','--'); v(i,:) = (position(L(i,1),:)+position(L(i,2),:))/2; plot(v(i,1),v(i,2),'*'); text(v(i,1)+2,v(i,2),strcat('v',num2str(i))); end %% 描绘可行路径 sign = load('matrix.txt'); [n,m]=size(sign); for i=1:n if i == 1 for k=1:m-1 if sign(i,k) == 1 plot([S(1),v(k-1,1)],[S(2),v(k-1,2)],'color',... 'black','Linewidth',2,'LineStyle','-'); end end continue; end for j=2:i if i == m if sign(i,j) == 1 plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color',... 'black','Linewidth',2,'LineStyle','-'); end else if sign(i,j) == 1 plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],... 'color','black','Linewidth',2,'LineStyle','-'); end end end end path = DijkstraPlan(position,sign); j = path(22); plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.'); i = path(22); j = path(i); count = 0; while true plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.'); count = count + 1; i = j; j = path(i); if i == 1 || j==1 break; end end plot([S(1),v(i-1,1)],[S(2),v(i-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.'); count = count+3; pathtemp(count) = 22; j = 22; for i=2:count pathtemp(count-i+1) = path(j); j = path(j); end path = pathtemp; path = [1 9 8 7 13 14 12 22]; %% 蚁群算法参数初始化 pathCount = length(path)-2; %经过线段数量 pheCacuPara=2; %信息素计算参数 pheThres = 0.8; %信息素选择阈值 pheUpPara=[0.1 0.0003]; %信息素更新参数 qfz= zeros(pathCount,10); %启发值 phePara = ones(pathCount,10)*pheUpPara(2); %信息素 qfzPara1 = ones(10,1)*0.5; %启发信息参数 qfzPara2 = 1.1; %启发信息参数 m=10; %种群数量 NC=500; %循环次数 pathk = zeros(pathCount,m); %搜索结果记录 shortestpath = zeros(1,NC); %进化过程记录 %% 初始最短路径 dijpathlen = 0; vv = zeros(22,2); vv(1,:) = S; vv(22,:) = T; vv(2:21,:) = v; for i=1:pathCount-1 dijpathlen = dijpathlen + sqrt((vv(path(i),1)-vv(path(i+1),1))^2+(vv(path(i),2)-vv(path(i+1),2))^2); end LL = dijpathlen; %% 经过的链接线 lines = zeros(pathCount,4); for i = 1:pathCount lines(i,1:2) = B(L(path(i+1)-1,1),:); lines(i,3:4) = B(L(path(i+1)-1,2),:); end %% 循环搜索 for num = 1:NC %% 蚂蚁迭代寻优一次 for i=1:pathCount for k=1:m q = rand(); qfz(i,:) = (qfzPara2-abs((1:10)'/10-qfzPara1))/qfzPara2; %启发信息 if q<=pheThres%选择信息素最大值 arg = phePara(i,:).*(qfz(i,:).^pheCacuPara); j = find(arg == max(arg)); pathk(i,k) = j(1); else % 轮盘赌选择 arg = phePara(i,:).*(qfz(i,:).^pheCacuPara); sumarg = sum(arg); qq = (q-pheThres)/(1-pheThres); qtemp = 0; j = 1; while qtemp < qq qtemp = qtemp + (phePara(i,j)*(qfz(i,j)^pheCacuPara))/sumarg; j=j+1; end j=j-1; pathk(i,k) = j(1); end % 信息素更新 phePara(i,j) = (1-pheUpPara(1))*phePara(i,j)+pheUpPara(1)*pheUpPara(2); end end %% 计算路径长度 len = zeros(1,k); for k=1:m Pstart = S; Pend = lines(1,1:2) + (lines(1,3:4)-lines(1,1:2))*pathk(1,k)/10; for l=1:pathCount len(1,k) = len(1,k)+sqrt(sum((Pend-Pstart).^2)); Pstart = Pend; if l<pathCount Pend = lines(l+1,1:2) + (lines(l+1,3:4)-lines(l+1,1:2))*pathk(l+1,k)/10; end end Pend = T; len(1,k) = len(1,k)+sqrt(sum((Pend-Pstart).^2)); end %% 更新信息素 % 寻找最短路径 minlen = min(len); minlen = minlen(1); minant = find(len == minlen); minant = minant(1); % 更新全局最短路径 if minlen < LL LL = minlen; end % 更新信息素 for i=1:pathCount phePara(i,pathk(i,minant)) = (1-pheUpPara(1))* phePara(i,pathk(i,minant))+pheUpPara(1)*(1/minlen); end shortestpath(num) = minlen; end figure; plot(1:NC,shortestpath,'color','blue'); hold on % plot(1:NC,dijpathlen,'color','red'); ylabel('路径总长度'); xlabel('迭代次数');
源代码,不适合小白,数学建模MATLAB资料 第1章谢菲尔德大学的MATLAB遗传算法工具箱 1.1理论基础 1.1.1遗传算法概述 1.1.2 谢菲尔德遗传算法工具箱 1.2案例背景 1.2.1 问题描述 1.2.2解题思路及步骤 1.3 MATLAB程序实现 1.3.1工具箱结构 1.3.2 遗传算法常用函数 1.3.3遗传算法工具箱应用举例 1.4延伸阅读 参考文献 第2章基于遗传算法和非线性规划的函数寻优算法 2.1理论基础 2.1.1非线性规划 2.1.2 非线性规划函数 2.1.3遗传算法基本思想 2。1.4算法结合思想 2.2案例背景 2.2.1 问题描述 2.2.2 算法流程 2.2.3遗传算法实现 2.3 MATLAB程序实现 2.3.1适应度函数 2.3.2选择操作 2.3.3交叉操作 2.3.4变异操作 2.3.5算法主函数 2.3.6非线性寻优 2.3.7结果分析 2.4延伸阅读 2.4.1其他函数的优化 2.4.2其他优化算法 参考文献 第3章基于遗传算法的BP神经网络优化算法 3.1理论基础 3.1.1 BP神经网络概述 3.1.2遗传算法的基本要素 3.2案例背景 3.2.1 问题描述 3.2.2解题思路及步骤 3.3 MATLAB程序实现 3.3.1 神经网络算法 3.3.2 遗传算法主函数 3.3.3 比较使用遗传算法前后的差别 3.3.4结果分析 3.4延伸阅读 参考文献 第4章基于遗传算法的TSP算法 4.1理论基础 4.2案例背景 4.2.1 问题描述 4.2.2解决思路及步骤 4.3 MATLAB程序实现 4.3.1种群初始化 4.3.2适应度函数 4.3.3选择操作 4.3.4 交叉操作 4.3.5变异操作 4.3.6进化逆转操作 4.3.7 画路线轨迹图 4.3.8遗传算法主函数 4.3.9结果分析 4.4延伸阅读 4.4.1 应用扩展 4.4.2 遗传算法的改进 4.4.3算法的局限性 参考文献 第5章基于遗传算法的LQR控制器优化设计 5.1理论基础 5.1.1 LQR控制 5.1.2 基于遗传算法设计LQR控制器 5.2案例背景 5.2.1 问题描述 5.2.2解题思路及步骤 …… 第6章遗传算法工具箱详解及应用 第7章多种群遗传算法的函数化算法 第8章基于量子遗传算法的函数寻优算法 第9章基于遗传算法的多目标优化算法 第10章基于粒子群处落地的多目标搜索算法 第11章基于多层编码遗传算法的车间调度算法 第12章免疫优化算法在物流配送中心选址中的应用 第13章粒子群算法的寻优算法 ……
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔钥曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值