深度学习天气照片数据集
数据集简介
本仓库包含了用于深度学习的天气照片数据集,共包含7种不同天气条件下的图片数据,分别是:clody(多云)、haze(雾霾)、sunrise(日出)、snow(雪)、shine(晴)、rain(雨)和thunder(雷暴)。该数据集旨在为研究人员和开发者提供一个全面、多样化的资源,以支持深度学习模型在天气识别领域的训练与验证。
文件说明
以下是本仓库包含的主要文件及其说明:
img_preprocess.py
:预处理天气照片的脚本,功能包括缩放图片至统一大小和修改图片名称。img_weather5.py
:天气识别训练模型及验证文件,用于搭建和训练天气识别模型。img_weather5_aug.py
:升级版天气识别训练模型及验证文件,引入了ImageDataGenerator扩充数据,通过随机旋转、平移、剪切和缩放比例等操作增强模型泛化能力。img_minist1.py
:数字识别脚本,用于识别0-9的数字。img_rgb2.py
:彩色图片分类脚本,分类对象包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。img_fashion3.py
:服装分类脚本,分类对象包括T恤/上衣、裤子、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包和短靴。
注意事项
- 请确保在运行脚本前已正确安装并配置了所需的Python环境和相关依赖。
- 使用数据集时,请遵循相关法律法规和数据使用规范,确保数据来源的合法性和正当性。
- 本数据集仅用于学术研究、个人学习和非商业用途。未经允许,请勿用于商业目的或其他未经授权的用途。
希望这个数据集能为您的深度学习项目带来帮助!