sumo-rl - traffic signal control reinforcement learning environment
简介
sumo-rl 是一个用于交通信号控制的强化学习环境,它提供了一个简洁的界面以便通过SUMO(Simulation of Urban MObility)实例化。此环境与OpenAI的Gym Env和RLlib的MultiAgentEnv兼容,旨在为研究人员和开发者提供一个易于使用且高度可定制的平台,以进行交通信号控制的强化学习研究。
功能特性
- 简洁的界面:sumo-rl 以其简单易用的界面设计,方便用户快速搭建和运行强化学习环境。
- 多代理支持:完全支持Multiagent RL环境,适应复杂的交通控制系统。
- 兼容性强:与流行的强化学习库gym.Env和RLlib无缝对接,方便用户集成和使用。
- 易于定制:用户可以根据需求轻松修改状态和奖励的定义。
安装指南
在开始使用sumo-rl之前,请确保按照以下步骤安装了最新版本的SUMO:
sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc
安装完成后,不要忘记设置环境变量 SUMO_HOME
(默认的sumo安装路径为 /usr/share/sumo
)。
注意事项
- 确保在运行sumo-rl之前,SUMO环境已经正确安装并配置好环境变量。
- 如果您在使用过程中遇到任何问题,请检查相关文档或寻求社区的帮助。
通过sumo-rl,我们希望能够推动交通信号控制领域的研究进展,并为相关领域的开发者提供一个强大的工具。