基于CNN的疲劳检测源码-Python
简介
本仓库包含了一个基于卷积神经网络(CNN)的疲劳检测系统源码,该系统适用于Python环境。本源码能够有效地进行疲劳状态检测,主要包括以下功能:
- 疲劳检测(Drowsiness Detection):通过分析用户的面部表情和行为特征,判断用户是否处于疲劳状态。
- 眨眼检测(Blink Detection):监测用户眨眼的频率,异常的眨眼频率可能是疲劳的标志。
- 打哈欠检测(Yawning Detection):识别用户是否频繁打哈欠,打哈欠通常与疲劳状态相关。
技术特点
- 模型框架:采用卷积神经网络(CNN)作为主要的模型框架,利用CNN强大的图像特征提取能力来提高检测的准确性。
- 实时监控:系统支持实时视频流监控,能够在实时场景下检测用户的疲劳状态。
- 用户友好:源码编写考虑了易用性和扩展性,便于用户根据自己的需求进行二次开发。
使用说明
- 确保您的Python环境中已安装必要的依赖库,如OpenCV等。
- 根据实际需求配置源码中的参数。
- 在合适的硬件条件下运行程序,开始疲劳检测。
注意事项
- 使用本源码前,请确保已经充分理解并遵守相关的法律法规和伦理规范。
- 系统的准确性和效率可能会受到环境光线、摄像头质量等因素的影响。
许可
此代码遵循MIT开源许可协议,您可以自由使用和修改源码,但请在分发的代码中保留原始的版权声明。
感谢您选择使用基于CNN的疲劳检测源码-Python,我们希望它能在您的项目中发挥重要作用。