基于深度置信网络(DBN)的回归预测Matlab代码库
简介
本代码库包含了一套基于深度置信网络(Deep Belief Network, DBN)的回归预测算法的Matlab实现。深度置信网络是一种概率生成模型,由多层神经网络组成,能够用于特征学习和模式识别。本代码质量优良,易于学习和替换数据,旨在帮助用户快速上手并深入理解DBN在回归预测任务中的应用。
功能特点
- 深度学习架构:采用DBN结构,能够有效学习数据特征。
- 多评价指标:提供R2、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等多种评价指标,全面评估模型性能。
- 代码质量:代码编写清晰、逻辑严密,方便用户理解及二次开发。
- 数据适配性:易于替换数据集,适用于不同的回归预测场景。
使用说明
在使用本代码库之前,请确保您的Matlab环境已配置深度学习工具箱。代码中已包含详细的注释,便于理解每一步的操作和算法实现。
主要文件
DBNRegression.m
:DBN回归预测的主函数。dataLoader.m
:用于加载数据集的函数。evaluateModel.m
:用于评估模型性能的函数。
使用步骤
- 加载数据集。
- 构建DBN模型。
- 训练模型。
- 评估模型性能。
- 预测新数据。
注意事项
- 根据实际数据分布情况调整DBN的网络结构。
- 调整学习率和迭代次数等超参数以优化模型性能。
版权声明
本代码库仅供学习和研究使用,未经允许不得用于商业用途。如需引用或使用,请遵守相关法律法规,并注明来源。
更新日志
- 2023:初始化代码库,完成基本功能和性能评估。