辛几何引论 PDF 资源介绍

辛几何引论 PDF 资源介绍

【下载地址】辛几何引论PDF资源介绍 《辛几何引论》是一本深入浅出的辛几何入门读物,适合大学高年级学生、研究生及相关领域的研究者。本书分为六章,从代数基础到辛流形、余切丛、辛G-空间、Poisson流形,再到分级情形,内容全面且系统。每章节详细讲解了辛几何的核心概念与应用,如辛向量空间、Hamilton向量场、Poisson括号等。本书不仅为初学者提供了清晰的引导,也为研究者提供了丰富的参考资料。无论您是学习还是研究辛几何,这本书都将成为您不可或缺的学术工具。 【下载地址】辛几何引论PDF资源介绍 项目地址: https://gitcode.com/Universal-Tool/df0a9

辛几何是近十几年迅速发展起来的一个新的重要数学分支。本书《辛几何引论》旨在为读者提供辛几何(李流形)的入门性读物,适用于大学高年级学生、研究生以及从事几何、群论、分析、特别是微分方程方面的研究工作者。

资源概述

《辛几何引论》共分为六章,内容详尽,从基本概念到应用均有涉及。以下是各章节的简要介绍:

第一章:代数基础

  • 包括反对称形式、辛向量空间与辛基底、sl(2k)在辛向量空间上的反对称形式代数中的标诠线性表示、辛群及辛复结构等内容。

第二章:辛流形

  • 涵盖流形上的辛结构、辛流形上的微分形式代数的算子、辛坐标、Hamilton向量场和辛向量场、辛坐标下的Poisson括号、辛流形的子流形等概念。

第三章:余切丛

  • 介绍Liouville形式和余切丛上的标准辛结构、余切丛上的辛向量场、余切丛的Lagrange子流形等内容。

第四章:辛G-空间

  • 涉及定义和例子、Hamilton空间和矩射、矩射的等价不变性等方面。

第五章:Poisson流形

  • 包括Poisson流形的结构、Poisson流形的叶子、Lie代数的对偶子上的Poisson结构等章节。

第六章:一个分级情形

  • 探讨(0n)维超流形、(0n)维辛超流形等内容。

使用说明

请确保您已具备相关基础知识,以便更好地理解和吸收本书内容。本书不仅可作为学习辛几何的入门读物,亦可供相关领域的研究者作为参考资料。

感谢您选择使用本资源,希望对您的研究和学习有所帮助。

【下载地址】辛几何引论PDF资源介绍 《辛几何引论》是一本深入浅出的辛几何入门读物,适合大学高年级学生、研究生及相关领域的研究者。本书分为六章,从代数基础到辛流形、余切丛、辛G-空间、Poisson流形,再到分级情形,内容全面且系统。每章节详细讲解了辛几何的核心概念与应用,如辛向量空间、Hamilton向量场、Poisson括号等。本书不仅为初学者提供了清晰的引导,也为研究者提供了丰富的参考资料。无论您是学习还是研究辛几何,这本书都将成为您不可或缺的学术工具。 【下载地址】辛几何引论PDF资源介绍 项目地址: https://gitcode.com/Universal-Tool/df0a9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩好玉Elbert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值