辛几何引论 PDF 资源介绍
辛几何是近十几年迅速发展起来的一个新的重要数学分支。本书《辛几何引论》旨在为读者提供辛几何(李流形)的入门性读物,适用于大学高年级学生、研究生以及从事几何、群论、分析、特别是微分方程方面的研究工作者。
资源概述
《辛几何引论》共分为六章,内容详尽,从基本概念到应用均有涉及。以下是各章节的简要介绍:
第一章:代数基础
- 包括反对称形式、辛向量空间与辛基底、sl(2k)在辛向量空间上的反对称形式代数中的标诠线性表示、辛群及辛复结构等内容。
第二章:辛流形
- 涵盖流形上的辛结构、辛流形上的微分形式代数的算子、辛坐标、Hamilton向量场和辛向量场、辛坐标下的Poisson括号、辛流形的子流形等概念。
第三章:余切丛
- 介绍Liouville形式和余切丛上的标准辛结构、余切丛上的辛向量场、余切丛的Lagrange子流形等内容。
第四章:辛G-空间
- 涉及定义和例子、Hamilton空间和矩射、矩射的等价不变性等方面。
第五章:Poisson流形
- 包括Poisson流形的结构、Poisson流形的叶子、Lie代数的对偶子上的Poisson结构等章节。
第六章:一个分级情形
- 探讨(0n)维超流形、(0n)维辛超流形等内容。
使用说明
请确保您已具备相关基础知识,以便更好地理解和吸收本书内容。本书不仅可作为学习辛几何的入门读物,亦可供相关领域的研究者作为参考资料。
感谢您选择使用本资源,希望对您的研究和学习有所帮助。