机器学习之线性模型选股 量化金融研究分析
本文档包含了一个利用机器学习进行线性模型选股的量化金融研究分析项目。该资源是参与私募公司面试时的作品,尽管最后未能加入该公司,但项目本身对于理解机器学习在金融领域的应用具有很高的参考价值。
项目中提到,进行时间序列回归分析时,必须确保时间序列先达到稳态,否则所得到的回归结果将是无效的,不具有参考意义。这一点对于金融数据分析尤为重要。
本代码仓库中的内容涵盖了以下几个主要部分:
- EMA策略(指数移动平均策略):一种常用的趋势跟踪交易策略。
- 订单管理:对交易订单进行有效管理的模块,以提高交易效率和效果。
我们希望这份研究分析能对同样对量化金融感兴趣的同行们有所启发和帮助。请合理使用本文档中的代码和策略,并结合实际市场情况谨慎操作。