豆瓣电影推荐系统毕业设计资源包
简介
本资源包是一个基于Python LSTM Flask框架搭建的豆瓣电影推荐系统的完整解决方案。包含以下内容:
- 完整的代码文件
- 论文文档
- PPT演示文稿
该系统利用长短期记忆网络(LSTM)模型,结合Flask框架,实现了对豆瓣电影数据的分析和推荐功能。此资源适合作为计算机科学与技术、软件工程等相关专业的毕业设计项目。
内容概览
1. 完整代码
- 项目结构清晰,包含数据预处理、模型训练、推荐算法等核心代码。
- 提供了从数据爬取到模型部署的完整流程。
2. 论文
- 论文详细介绍了系统的设计思路、技术路线、实验过程和结果分析。
- 包含了相关的理论知识,如LSTM网络结构、Flask框架应用等。
3. PPT演示文稿
- 演示文稿概括了项目的核心内容和关键步骤。
- 适合用于项目答辩和成果展示。
使用说明
- 确保Python环境已安装,并安装以下依赖库:
pandas
、numpy
、scikit-learn
、flask
。 - 解压资源包,进入项目文件夹。
- 执行相关脚本,开始数据预处理和模型训练。
- 根据需要调整模型参数,优化推荐效果。
- 运行Flask服务,进行推荐系统的测试和部署。
版权声明
本项目遵循MIT开源协议,允许自由使用和修改。在使用本项目时,请遵守相关法律法规,并尊重知识产权。
本项目仅供参考和学习使用,不得用于商业目的。如有疑问,请自行承担相关责任。