Efficient-KAN项目中大模型显存不足问题的分析与解决方案

Efficient-KAN项目中大模型显存不足问题的分析与解决方案

efficient-kan An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN). efficient-kan 项目地址: https://gitcode.com/gh_mirrors/ef/efficient-kan

问题背景

在使用Efficient-KAN项目进行深度学习模型训练时,当隐藏层维度设置过大时,会出现CUDA显存不足的错误。具体表现为当尝试构建一个输入维度为1152、隐藏层维度为4608(11524)、输出维度为1152的KAN网络,并使用批量大小为16384(40964)的数据进行前向传播时,GPU显存会被耗尽。

技术分析

这种现象的根本原因在于神经网络模型对显存的需求超过了GPU设备的物理容量。显存占用主要来自两个方面:

  1. 模型参数存储:KAN网络的参数数量随着隐藏层维度的增加呈平方级增长。在示例中,从输入层到隐藏层的参数矩阵尺寸就达到了1152×4608=5,308,416个参数。

  2. 中间激活值缓存:在前向传播过程中,每一层的输出结果都需要被缓存以便反向传播时使用。批量大小16384意味着需要同时存储16384个样本在每一层的中间结果。

解决方案

1. 减小批量大小

最直接的解决方法是降低每次处理的样本数量。可以通过以下方式实现:

batch_size = 512  # 根据显存情况调整
x = torch.rand(size=(batch_size, 1152)).to("cuda")

2. 使用数据加载器

PyTorch提供了DataLoader工具,可以自动处理批量数据的加载和内存管理:

from torch.utils.data import TensorDataset, DataLoader

dataset = TensorDataset(torch.rand(size=(16384, 1152)))
dataloader = DataLoader(dataset, batch_size=512, shuffle=True)

for batch in dataloader:
    output = net(batch[0].to("cuda"))

3. 梯度累积技术

当显存限制导致无法使用足够大的批量大小时,可以采用梯度累积技术:

optimizer.zero_grad()
for i, (inputs) in enumerate(dataloader):
    outputs = net(inputs.to("cuda"))
    loss = criterion(outputs, targets)
    loss.backward()
    
    if (i+1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()

4. 模型架构优化

考虑减少隐藏层维度或使用更高效的网络结构。对于KAN网络,可以:

  • 降低隐藏层维度
  • 使用分阶段处理
  • 实现参数共享机制

5. 混合精度训练

利用PyTorch的自动混合精度(AMP)功能可以减少显存占用:

from torch.cuda.amp import autocast

with autocast():
    output = net(inputs)

最佳实践建议

  1. 在模型开发初期,使用小批量和小规模网络进行快速验证
  2. 逐步增加批量大小和网络规模,同时监控显存使用情况
  3. 使用torch.cuda.memory_summary()定期检查显存分配情况
  4. 考虑使用模型并行技术将大型网络分布到多个GPU上

通过合理应用这些技术,可以在有限显存条件下有效训练大规模KAN网络,平衡模型性能与计算资源之间的关系。

efficient-kan An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN). efficient-kan 项目地址: https://gitcode.com/gh_mirrors/ef/efficient-kan

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郝战为Farley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值