ComfyUI-BrushNet:无缝集成的图像修复节点库
ComfyUI-BrushNet ComfyUI BrushNet nodes 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-BrushNet
项目基础介绍及编程语言
ComfyUI-BrushNet 是一个专为 ComfyUI 设计的定制节点集合,它实现了原生的 BrushNet 模型。“BrushNet”是一种插件式图像修复模型,拥有分解的双重扩散分支,专为高效图片内填充设计。此项目由 Python
驱动,利用了深度学习技术来提供高级图像处理能力,尤其是针对图像中的破损或缺失部分进行智能修复。
核心功能
- 图像内填充: 利用先进的深度学习算法自动补全图像中被遮挡或删除的部分。
- 双分支扩散: 解耦的结构允许更精细的控制,提升修复效果的自然度和细节准确性。
- 自定义强度控制: 用户可以调整“BrushNet”的影响力,通过“scale”参数,控制修复程度。
- 步骤控制: 开始(
start_at
)和结束(end_at
)步骤参数让模型在特定的生成阶段介入或停止作用,增加灵活性。 - 兼容性增强: 适应并优化与其他ComfyUI节点的协同工作,如支持PowerPaint、RAUNet等功能丰富的工作流程。
最近更新的功能
- 2024年5月16日: 进行内部重构以提高与其他节点的兼容性,并加入了RAUNet实现。
- 2024年5月12日: 引入
CutForInpaint
节点,提供示例演示其应用方式。 - 2024年5月11日: 实现图像批次处理,甚至能够将BrushNet融入AnimateDiff vid2vid工作流中,尽管二者不完全兼容。
- 持续更新: 包括对SDXL的支持、模型版本迭代、性能优化以及用户体验改进,确保项目保持先进性和实用性。
通过这些特性,ComfyUI-BrushNet 成为了图像编辑和修复领域的一个强大工具,尤其适合那些寻求在ComfyUI环境下实现专业级图像修复和创意效果的开发者和艺术家。结合最新的更新,该项目不仅提供了强大的技术基础,还展现了对用户需求的积极响应与创新。
ComfyUI-BrushNet ComfyUI BrushNet nodes 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-BrushNet