Sample Remote SWE Agents 项目中的 AMI 垃圾回收机制实现
在云计算环境中,随着持续集成和持续部署(CI/CD)流程的不断运行,系统会积累大量不再使用的Amazon Machine Images(AMI)。这些未被清理的AMI不仅占用存储空间,还会产生不必要的费用。本文将深入分析Sample Remote SWE Agents项目中实现的AMI垃圾回收机制。
AMI垃圾回收的必要性
在远程软件开发环境(Remote SWE)代理项目中,EC2实例的创建依赖于预先构建的AMI。随着项目迭代和更新,系统会生成大量新版本的AMI,而旧版本往往会被遗弃。这些未被清理的AMI会带来两个主要问题:
- 存储成本增加:每个AMI都会占用Amazon EBS存储空间,长期积累会导致显著的成本上升
- 管理复杂度提高:大量无用AMI会使得资源管理变得困难,影响运维效率
技术实现方案
项目采用AWS CDK和Lambda函数结合的方式实现了自动化的AMI垃圾回收机制。核心逻辑部署在EC2垃圾回收构造体(EC2-GC construct)中,通过定时触发的Lambda函数执行清理任务。
AMI筛选策略
Lambda函数执行时,会通过EC2 DescribeImages API获取所有符合条件的AMI,筛选条件包括:
- 所有权属于当前账户(owner:Self)
- AMI名称以指定的imageRecipeName开头
- 创建时间超过24小时
- 不是当前正在使用的AMI(通过比对系统参数存储中的'/remote-swe/worker/ami-id'值)
清理流程
对于符合清理条件的AMI,系统会执行以下操作:
- 删除AMI本身:直接移除不再使用的Amazon Machine Image
- 清理关联资源:通过AMI标签中的Ec2ImageBuilderArn信息,找到并删除对应的EC2 Image Builder资源
这种双重清理机制确保了不会留下任何孤立的资源,避免了潜在的资源泄漏问题。
实现细节
在代码实现上,项目采用了TypeScript编写Lambda函数,主要处理逻辑包括:
- 获取当前活跃的AMI ID(从系统参数存储)
- 查询所有符合条件的AMI
- 应用时间过滤条件(创建超过24小时)
- 排除当前活跃的AMI
- 执行删除操作(包括AMI本身和对应的Image Builder资源)
这种实现方式既保证了系统的稳定性(不会误删正在使用的资源),又实现了资源的及时回收,有效控制了云资源成本。
最佳实践建议
基于此实现,我们可以总结出一些云资源管理的通用最佳实践:
- 为所有自动生成的资源添加一致的命名前缀或标签,便于后续管理
- 实现自动化清理机制,避免依赖人工操作
- 保留足够的缓冲时间(如24小时),防止误删可能还需要使用的资源
- 清理时考虑资源间的关联性,确保完整清理所有相关资源
- 通过系统参数或配置中心管理关键资源ID,便于状态查询和验证
这种自动化垃圾回收机制不仅适用于AMI管理,也可以推广到其他云资源的生命周期管理中,是云原生架构中成本优化的重要手段之一。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考