Trajectory-Transformer 项目安装和配置指南

Trajectory-Transformer 项目安装和配置指南

Trajectory-Transformer Code for "Transformer Networks for Trajectory Forecasting" Trajectory-Transformer 项目地址: https://gitcode.com/gh_mirrors/tra/Trajectory-Transformer

1. 项目基础介绍和主要编程语言

项目基础介绍

Trajectory-Transformer 是一个用于轨迹预测的 Transformer 网络项目。该项目基于 Transformer 架构,旨在通过深度学习技术预测物体的未来轨迹。该项目的主要应用场景包括自动驾驶、机器人导航等领域。

主要编程语言

该项目主要使用 Python 编程语言进行开发。

2. 项目使用的关键技术和框架

关键技术

  • Transformer 网络:基于 Transformer 架构,用于处理序列数据,特别是轨迹数据。
  • PyTorch:深度学习框架,用于构建和训练 Transformer 模型。
  • KMeans:用于聚类分析,特别是在量化轨迹预测中使用。

框架

  • PyTorch 1.0+:用于构建和训练深度学习模型。
  • Numpy:用于数值计算。
  • Scipy:用于科学计算。
  • Pandas:用于数据处理和分析。
  • Tensorboard:用于训练过程的可视化。
  • kmeans_pytorch:用于 GPU 加速的 KMeans 聚类。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装和配置之前,请确保您的系统满足以下要求:

  • Python 3.6 或更高版本
  • PyTorch 1.0 或更高版本
  • CUDA(如果使用 GPU 进行训练)
  • Git

详细安装步骤

步骤 1:克隆项目仓库

首先,使用 Git 克隆项目仓库到本地:

git clone https://github.com/FGiuliari/Trajectory-Transformer.git
cd Trajectory-Transformer
步骤 2:创建虚拟环境(可选)

为了隔离项目依赖,建议创建一个虚拟环境:

python -m venv trajectory_env
source trajectory_env/bin/activate  # 在 Windows 上使用 trajectory_env\Scripts\activate
步骤 3:安装依赖

使用 pip 安装项目所需的依赖:

pip install -r requirements.txt
步骤 4:数据准备

项目的 dataset 文件夹需要按照以下结构进行组织:

- dataset
  - dataset_name
    - train_folder
    - test_folder
    - validation_folder (可选)
    - clusters.mat (用于量化TF)
步骤 5:训练 Individual Transformer

要训练 Individual Transformer,请运行以下命令:

CUDA_VISIBLE_DEVICES=0 python train_individualTF.py --dataset_name eth --name eth --max_epoch 240 --batch_size 100 --name eth_train --factor 1
步骤 6:训练 QuantizedTF

要训练 QuantizedTF,请按照以下步骤操作:

  1. 创建聚类

    CUDA_VISIBLE_DEVICES=0 python kmeans.py --dataset_name eth
    

    将生成的 clusters.mat 文件放入相应的数据集文件夹中。

  2. 训练量化模型

    CUDA_VISIBLE_DEVICES=0 python train_quantizedTF.py --dataset_name zara1 --name zara1 --batch_size 1024
    
  3. 评估模型

    CUDA_VISIBLE_DEVICES=0 python test_quantizedTF.py --dataset_name eth --name eth --batch_size 1024 --epoch 00030 --num_samples 20
    
步骤 7:可视化训练过程

使用 Tensorboard 可视化训练过程:

tensorboard --logdir logs

通过以上步骤,您应该能够成功安装和配置 Trajectory-Transformer 项目,并开始进行轨迹预测模型的训练和评估。

Trajectory-Transformer Code for "Transformer Networks for Trajectory Forecasting" Trajectory-Transformer 项目地址: https://gitcode.com/gh_mirrors/tra/Trajectory-Transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祝佩逸Dragon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值