WeakAuras Companion 安装和配置指南

WeakAuras Companion 安装和配置指南

WeakAuras-Companion A cross-platform application built to provide the missing link between Wago.io and World of Warcraft WeakAuras-Companion 项目地址: https://gitcode.com/gh_mirrors/we/WeakAuras-Companion

1. 项目基础介绍和主要编程语言

项目基础介绍

WeakAuras Companion 是一个跨平台的应用程序,旨在为 World of Warcraft 游戏中的 WeakAuras 插件提供与 Wago.io 之间的缺失链接。通过这个应用程序,用户可以轻松地从 Wago.io 获取已安装光环的更新,而无需手动复制粘贴导入字符串。此外,它还能确保用户始终使用最新版本的光环。

主要编程语言

该项目主要使用以下编程语言和框架:

  • Vue.js: 用于构建用户界面。
  • TypeScript: 用于编写应用程序的逻辑代码。
  • Electron: 用于构建跨平台的桌面应用程序。

2. 项目使用的关键技术和框架

关键技术和框架

  • Electron: 一个使用 Web 技术构建跨平台桌面应用程序的框架。
  • Vue.js: 一个用于构建用户界面的渐进式 JavaScript 框架。
  • TypeScript: 一个强类型的 JavaScript 超集,提供更好的代码质量和可维护性。
  • pnpm: 一个快速的、节省磁盘空间的包管理器。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • Node.js: 建议使用最新版本的 Node.js。
  • pnpm: 建议使用最新版本的 pnpm。
  • Git: 用于克隆项目仓库。

详细安装步骤

步骤 1: 克隆项目仓库

首先,使用 Git 克隆项目仓库到本地:

git clone https://github.com/WeakAuras/WeakAuras-Companion.git
cd WeakAuras-Companion
步骤 2: 安装依赖

使用 pnpm 安装项目所需的依赖:

pnpm install
步骤 3: 运行开发服务器

如果您想在开发模式下运行应用程序,可以使用以下命令启动开发服务器:

pnpm run dev
步骤 4: 构建生产版本

如果您想构建生产版本的应用程序,可以使用以下命令:

pnpm run build
步骤 5: 配置应用程序

在首次启动应用程序时,您需要配置以下内容:

  • World of Warcraft 文件夹路径: 指定您的 World of Warcraft 游戏文件夹路径。
  • 账户名称: 指定您的 World of Warcraft 账户名称。
步骤 6: 启动应用程序

完成配置后,您可以启动应用程序并开始使用。应用程序会自动检查并更新您安装的光环。

其他功能

  • 备份功能: 应用程序可以定期创建 WeakAuras 的备份,以防止意外丢失。
  • 自动更新: 应用程序会每小时自动检查并更新光环。

通过以上步骤,您可以成功安装并配置 WeakAuras Companion 应用程序,享受自动更新光环的便利。

WeakAuras-Companion A cross-platform application built to provide the missing link between Wago.io and World of Warcraft WeakAuras-Companion 项目地址: https://gitcode.com/gh_mirrors/we/WeakAuras-Companion

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱章焕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值