PaddleVideo:基于PaddlePaddle的优秀视频理解工具包
项目基础介绍和主要编程语言
PaddleVideo 是一个基于 PaddlePaddle 的开源视频理解工具包,旨在为视频领域的学术研究和产业实践提供丰富的工具和模型。该项目主要使用 Python 编程语言,同时也涉及 Shell、C++ 和 CMake 等语言。
项目核心功能
PaddleVideo 提供了多种视频理解任务的支持,包括但不限于:
- 视频数据标注工具:支持视频数据的标注,帮助开发者准备训练数据。
- 轻量级RGB和骨骼点行为识别模型:提供了高效的模型,适用于行为识别任务。
- 视频标签和体育动作检测的实际应用:支持视频标签和体育动作检测的实际应用场景。
项目最近更新的功能
PaddleVideo 最近更新了以下功能:
- 开源视频标注工具:新增了视频标注工具 BILS,方便开发者进行视频数据的标注。
- 轻量化行为识别模型:发布了轻量化行为识别模型 PP-TSMv2,Kinetics-400 精度达到 75.16%,10 秒视频的 CPU 推理时间仅需 456ms。
- 知识蒸馏功能:新增了知识蒸馏功能,提升了模型的性能。
- 基于 Transformer 的行为识别模型:新增了基于 Transformer 的行为识别模型 TokenShift。
- 基于骨骼点的行为识别模型:新增了基于骨骼点的行为识别模型 2s-ACGN 和 CTR-GCN。
- 单阶段时空动作检测模型:新增了单阶段时空动作检测模型 YOWO。
PaddleVideo 致力于为开发者提供丰富、领先且实用的视频理解工具,帮助他们在视频领域的研究和应用中取得更好的成果。