FUXA项目中大数据量趋势图加载的优化方案

FUXA项目中大数据量趋势图加载的优化方案

FUXA Web-based Process Visualization (SCADA/HMI/Dashboard) software FUXA 项目地址: https://gitcode.com/gh_mirrors/fu/FUXA

背景介绍

在工业自动化监控系统中,FUXA作为一个开源的SCADA/HMI解决方案,经常需要处理来自各种设备的高频采样数据。当用户使用快速采样(如每200ms采集一次电网质量数据)时,DAQ文件会迅速变得非常庞大,导致前端加载时间过长甚至浏览器崩溃。

问题分析

高频数据采集带来两个主要挑战:

  1. 前端渲染性能问题:当数据量过大时,浏览器需要处理数百万个数据点,导致加载缓慢甚至崩溃
  2. 用户体验问题:用户无法感知加载进度,也无法在发现查询过大时取消操作

解决方案

FUXA项目团队针对这一问题提供了多层次的优化方案:

1. 分块加载机制

最新版本中实现了"chunk DAQ history result"功能,该功能将大数据集分割成多个小块进行加载和渲染。这种机制带来了以下优势:

  • 避免浏览器因一次性处理过多数据而崩溃
  • 允许用户在加载过程中看到进度反馈
  • 提供了取消加载的可能性

2. 数据过滤策略

对于需要长期监测的场景,建议采用以下数据过滤方法:

  • 使用触发器机制只记录关键变化区间的数据
  • 在数据源头(如PLC)实现FIFO缓冲区,定期推送变化数据
  • 通过脚本函数$getHistoricalTags实现自定义数据查询范围

3. 前端优化

趋势图组件增加了大数据处理能力:

  • 智能数据降采样显示
  • 渐进式渲染技术
  • 可视化加载进度指示

实施建议

对于需要高频采样的应用场景(如电网质量监测),建议采用以下最佳实践:

  1. 合理设置采样频率:根据实际需求平衡精度和性能
  2. 使用范围查询:通过脚本精确指定需要加载的时间范围
  3. 考虑边缘计算:在数据源头进行初步处理和过滤

总结

FUXA项目通过引入分块加载机制和多种数据优化策略,有效解决了大数据量趋势图加载的性能问题。这些改进不仅提升了系统稳定性,也显著改善了用户体验,使FUXA能够更好地服务于工业自动化领域的高频数据监测需求。

FUXA Web-based Process Visualization (SCADA/HMI/Dashboard) software FUXA 项目地址: https://gitcode.com/gh_mirrors/fu/FUXA

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢焕惟Beneficient

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值