ReactiveMP.jl项目中softdot节点结构化变分消息传递的数学推导

ReactiveMP.jl项目中softdot节点结构化变分消息传递的数学推导

ReactiveMP.jl High-performance reactive message-passing based Bayesian inference engine ReactiveMP.jl 项目地址: https://gitcode.com/gh_mirrors/re/ReactiveMP.jl

背景介绍

ReactiveMP.jl是一个概率编程框架,它实现了高效的变分消息传递算法。在贝叶斯图模型中,softdot节点表示线性变换操作,类似于神经网络中的全连接层。理解其消息传递机制对于构建复杂概率模型至关重要。

结构化变分分解

在结构化变分推断中,我们考虑以下分解形式:

q(y,θ,x,γ) = q(y,x) q(θ) q(γ)

这种分解方式允许我们在保持变量间某些依赖关系的同时,对其他部分进行近似。

消息传递推导

对于θ参数的消息传递,我们需要计算其变分后验分布。根据变分消息传递规则,这个分布的形式为:

ξ = (Vx + mx * mxᵀ)⁻¹ * (Vyx + mx * my)

这里需要注意几个关键点:

  1. ξ表示的是加权均值(精度乘以均值),而非直接均值
  2. my是一个标量值,不需要转置操作
  3. 整个表达式结果是一个向量

数学验证

原问题中提出的表达式:

ξ = (Vyx + mx * my') * (Vx + mx * mx')⁻¹

与正确形式的主要区别在于:

  1. 矩阵乘法顺序错误
  2. 不必要的转置操作
  3. 不符合向量运算的维度要求

正确的表达式确保了:

  • 矩阵维度的兼容性
  • 数学运算的正确性
  • 与理论推导的一致性

实际应用意义

理解这个推导对于:

  1. 实现自定义概率模型
  2. 调试变分推断算法
  3. 扩展ReactiveMP.jl功能 都非常重要。特别是在构建自回归模型时,这种softdot节点的变分更新是基础构建块。

结论

通过仔细的数学推导和验证,我们确认了ReactiveMP.jl中softdot节点结构化变分消息传递实现的正确性。这种实现方式不仅数学上严谨,而且在计算效率上也经过了优化,适合大规模概率模型的推理。

ReactiveMP.jl High-performance reactive message-passing based Bayesian inference engine ReactiveMP.jl 项目地址: https://gitcode.com/gh_mirrors/re/ReactiveMP.jl

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏铭焘Salome

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值