TensorRT-LLM 项目推荐
1. 项目基础介绍和主要编程语言
TensorRT-LLM 是由 NVIDIA 开发的一个开源项目,旨在为大型语言模型(LLMs)提供优化的推理性能。该项目主要使用 Python 和 C++ 进行开发。TensorRT-LLM 提供了一个易于使用的 Python API,用于定义和构建包含最先进优化技术的 TensorRT 引擎,以在 NVIDIA GPU 上高效执行推理任务。
2. 项目核心功能
TensorRT-LLM 的核心功能包括:
- 优化推理性能:通过自定义注意力内核、飞行中批处理、分页 KV 缓存、量化(FP8、INT4 AWQ、INT8 SmoothQuant 等)等技术,显著提升大型语言模型在 NVIDIA GPU 上的推理效率。
- Python API:提供一个易于使用的 Python API,用于构建和优化 TensorRT 引擎。
- C++ 运行时:包含 C++ 运行时组件,用于执行优化后的 TensorRT 引擎。
- 多 GPU 和多节点支持:支持从单个 GPU 到多节点多 GPU 的配置,使用张量并行和流水线并行技术。
- 预定义模型:包含多个流行的预定义模型,用户可以轻松修改和扩展以满足自定义需求。
3. 项目最近更新的功能
TensorRT-LLM 最近更新的功能包括:
- 2024/09/04:最佳实践指南,用于使用 BentoML 调优 TensorRT-LLM 以实现最佳服务性能。
- 2024/08/20:支持 SDXL 模型优化,包括缓存扩散、量化感知训练和 QLoRA。
- 2024/08/13:DIY 代码补全功能,使用 Mamba 和 TensorRT-LLM 加速推理,并支持在任何地方部署。
- 2024/08/06:支持多语言挑战,提升低资源语言(如希伯来语、印尼语和越南语)的性能。
- 2024/07/30:引入 SliceXAI ELM Turbo,支持一次训练、多次优化和部署。
- 2024/07/23:支持 Meta 的 Llama 3 模型,优化推理性能,提升吞吐量。
- 2024/07/09:多语言性能优化检查清单,用于最大化 Meta Llama 3 的多语言性能。
- 2024/07/02:支持 MistralAI 的 Mixtral 8x7B 模型,在 H100 GPU 上实现高性能。
- 2024/06/24:支持 Upstage AI 的 solar-10.7B-instruct 模型,通过 API 目录提供服务。
- 2024/06/18:Stable Diffusion 3 的加速指南,使用 TensorRT INT8 量化技术。
- 2024/06/18:ComfyUI 与 TensorRT 的部署指南。
- 2024/06/11:TensorRT 权重剥离引擎的技术深入探讨,实现高压缩率和性能优化。
- 2024/06/04:TensorRT 和 GeForce RTX 解锁 ComfyUI SD 超级英雄能力,提供演示和 DIY 笔记本。
这些更新进一步增强了 TensorRT-LLM 的功能和性能,使其成为在 NVIDIA GPU 上优化大型语言模型推理的强大工具。