DeepSense-AI/Ragbits 项目中的 Few-Shot 学习图像输入支持探讨
在机器学习领域,few-shot learning(少样本学习)是一种重要的技术范式,它使模型能够通过少量示例快速适应新任务。DeepSense-AI 团队开发的 Ragbits 项目近期针对该功能进行了重要讨论,特别是关于如何扩展系统以支持图像输入的问题。
技术背景与现状
Ragbits 当前实现的 FewShotExample 类型主要面向文本输入场景。随着多模态模型的发展,项目需要扩展功能以支持图像输入,这将为以下应用场景提供可能:
- 图像分类任务中的少样本学习
- 结合文本和图像的跨模态推理
- 基于视觉内容的问答系统
架构设计考量
团队在讨论中提出了三种潜在的技术方案:
-
完整对话格式方案:Prompt 的 chat() 方法直接返回包含图像等非标准元素的完整 OpenAI 格式对话。这种方案的优点是结构统一,但缺点是 Prompt 层无法预知具体 LLM 模型的能力限制。
-
独立消息对象方案:返回与 OpenAI 格式解耦的消息对象列表,由 LLM 层负责转换为目标格式并决定使用哪些元素。这种方案提供了更好的灵活性,但增加了架构复杂度。
-
纯文本方案:仅返回文本内容,由 LLM 层通过额外调用获取其他元素。这种方案实现简单,但可能导致元素关联性难以维护。
技术决策与实现
经过深入讨论,团队最终选择了方案1的变体:保持返回 OpenAI 格式的决策,同时增加模型能力检测机制。具体实现将包含以下关键点:
- 当检测到模型不支持图像输入时,系统将抛出明确异常
- 保持 FewShotExample 的现有结构,利用输入模型对象中已有的图像字段
- 确保 few-shot 示例中的图像字段能被正确识别和处理
技术影响与展望
这一改进将为 Ragbits 项目带来重要的能力提升:
- 支持更丰富的多模态 few-shot 学习场景
- 保持向后兼容性,不影响现有文本功能
- 为未来可能的音频、视频等多模态扩展奠定基础
该技术演进体现了 Ragbits 项目对前沿机器学习需求的快速响应能力,也展示了团队在架构设计上的深思熟虑。随着多模态模型技术的快速发展,这种灵活而稳健的设计决策将使项目保持长期竞争力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考