Stanford Alpaca 项目安装和配置指南

Stanford Alpaca 项目安装和配置指南

stanford_alpaca Code and documentation to train Stanford's Alpaca models, and generate the data. stanford_alpaca 项目地址: https://gitcode.com/gh_mirrors/st/stanford_alpaca

1. 项目基础介绍和主要编程语言

项目介绍

Stanford Alpaca 是一个开源项目,旨在构建和分享一个遵循指令的 LLaMA 模型。该项目由斯坦福大学开发,主要用于研究和教育目的。Alpaca 模型是基于 LLaMA 7B 模型进行微调的,能够执行各种指令性任务。

主要编程语言

该项目主要使用 Python 编程语言进行开发和实现。

2. 项目使用的关键技术和框架

关键技术

  • LLaMA 模型:基于 LLaMA 7B 模型进行微调。
  • Self-Instruct 技术:用于生成指令遵循数据。
  • OpenAI API:用于生成训练数据。

框架

  • Hugging Face Transformers:用于模型的训练和微调。
  • PyTorch:深度学习框架,用于模型的实现和训练。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 安装 Python:确保你的系统上安装了 Python 3.7 或更高版本。你可以从 Python 官方网站 下载并安装。
  2. 安装 Git:确保你的系统上安装了 Git。你可以从 Git 官方网站 下载并安装。
  3. 获取 OpenAI API Key:如果你需要生成数据,你需要一个 OpenAI API Key。你可以从 OpenAI 网站 获取。

详细安装步骤

步骤 1:克隆项目仓库

首先,克隆 Stanford Alpaca 项目到你的本地机器:

git clone https://github.com/tatsu-lab/stanford_alpaca.git
cd stanford_alpaca
步骤 2:安装依赖

使用 pip 安装项目所需的依赖:

pip install -r requirements.txt
步骤 3:配置环境变量

如果你需要生成数据,设置 OpenAI API Key 环境变量:

export OPENAI_API_KEY="your_openai_api_key"
步骤 4:生成数据(可选)

如果你需要生成数据,运行以下命令:

python -m generate_instruction generate_instruction_following_data
步骤 5:微调模型(可选)

如果你需要微调模型,运行以下命令:

torchrun --nproc_per_node=4 --master_port=<your_random_port> train.py \
  --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \
  --data_path ./alpaca_data.json \
  --bf16 True \
  --output_dir <your_output_dir> \
  --num_train_epochs 3 \
  --per_device_train_batch_size 4 \
  --per_device_eval_batch_size 4 \
  --gradient_accumulation_steps 8 \
  --evaluation_strategy "no" \
  --save_strategy "steps" \
  --save_steps 2000 \
  --save_total_limit 1 \
  --learning_rate 2e-5

请根据你的实际情况替换 <your_random_port><your_path_to_hf_converted_llama_ckpt_and_tokenizer><your_output_dir>

完成

至此,你已经成功安装并配置了 Stanford Alpaca 项目。你可以根据需要进一步探索和使用该项目。

stanford_alpaca Code and documentation to train Stanford's Alpaca models, and generate the data. stanford_alpaca 项目地址: https://gitcode.com/gh_mirrors/st/stanford_alpaca

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李甜漫Miles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值