GPT-SoVITS: 一分钟语音数据训练出色TTS模型完全安装配置手册
GPT-SoVITS 项目地址: https://gitcode.com/gh_mirrors/gp/GPT-SoVITS
项目基础介绍及编程语言
GPT-SoVITS 是一个基于少量样本进行高效文本转语音(TTS)训练的开源项目,特别强调即使是仅仅一分钟的语音数据也能用来训练出质量不错的TTS模型,实现快速的声音克隆(Few-shot voice cloning)。项目主要采用了Python作为开发语言,并集成了PyTorch深度学习框架,以实现其核心功能。
关键技术和框架
- PyTorch: 动态计算图机制的深度学习框架,支持高效的模型构建和训练。
- Text-to-Speech (TTS) 技术,利用神经网络模型将文本转换为自然流畅的语音。
- Few-shot Learning: 允许模型通过极少的示例进行个性化调整和优化。
- 集成工具如语音分离、训练集自动分割、中英文自动识别系统等,辅助模型训练与声音处理。
准备工作与详细安装步骤
系统要求
确保你的电脑运行的是以下测试过的环境之一:
- Python 3.9或3.10
- PyTorch 2.0或以上版本,依赖CUDA对应版本
- macOS, Linux, 或者是Windows 10 及以上
步骤一:环境搭建
-
安装Python:确保Python 3.9或3.10已安装。可以通过命令行输入
python --version
来检查版本。 -
创建虚拟环境(推荐):
# 对于Linux/MacOS python3.9 -m venv myGPTSoVITSenv source myGPTSoVITSenv/bin/activate # 对于Windows py -3.9 -m venv myGPTSoVITSenv myGPTSoVITSenv\Scripts\activate
-
安装必要的包: 进入项目根目录后执行:
pip install -r requirements.txt
步骤二:获取项目源码
- 使用Git克隆仓库:
git clone https://github.com/RVC-Boss/GPT-SoVITS.git
- 或直接下载ZIP文件并解压到适合的位置。
步骤三:配置环境变量与模型权重下载
-
环境变量设置:对于半精度/双精度控制,如有必要,在运行时通过命令行参数指定
--env=is_half=True/False
。 -
预训练模型下载:
- 对于中国用户,有特定的下载地址,需先下载至项目内的相应文件夹如
GPT_SoVITS/pretrained_models
。 - 不同的语言处理模型(如G2PWModel适用于中文TTS),记得解压后更名并放置在正确位置。
- 对于中国用户,有特定的下载地址,需先下载至项目内的相应文件夹如
步骤四:启动应用
本地运行:
- 对于集成包,Windows用户只需双击
go-webui.bat
或在Linux/macOS下使用对应的.sh
脚本。 - 对于手动配置,运行以下命令(根据实际环境调整端口、路径等):
python webui.py zh # 语言代码可根据需要更改
使用Docker(高级用户适用):
- 安装Docker。
- 调整
docker-compose.yaml
中的环境变量和卷挂载点。 - 启动容器:
docker-compose up -d
步骤五:验证安装
- 访问WebUI界面,通常是在浏览器输入localhost的某个端口(如9880),根据提示上传音频样本,体验零样本TTS或少数样本微调的功能。
至此,您已经成功安装并配置了GPT-SoVITS项目,可以开始您的语音合成之旅了。
GPT-SoVITS 项目地址: https://gitcode.com/gh_mirrors/gp/GPT-SoVITS