GPT-SoVITS: 一分钟语音数据训练出色TTS模型完全安装配置手册

GPT-SoVITS: 一分钟语音数据训练出色TTS模型完全安装配置手册

GPT-SoVITS GPT-SoVITS 项目地址: https://gitcode.com/gh_mirrors/gp/GPT-SoVITS

项目基础介绍及编程语言

GPT-SoVITS 是一个基于少量样本进行高效文本转语音(TTS)训练的开源项目,特别强调即使是仅仅一分钟的语音数据也能用来训练出质量不错的TTS模型,实现快速的声音克隆(Few-shot voice cloning)。项目主要采用了Python作为开发语言,并集成了PyTorch深度学习框架,以实现其核心功能。

关键技术和框架

  • PyTorch: 动态计算图机制的深度学习框架,支持高效的模型构建和训练。
  • Text-to-Speech (TTS) 技术,利用神经网络模型将文本转换为自然流畅的语音。
  • Few-shot Learning: 允许模型通过极少的示例进行个性化调整和优化。
  • 集成工具如语音分离、训练集自动分割、中英文自动识别系统等,辅助模型训练与声音处理。

准备工作与详细安装步骤

系统要求

确保你的电脑运行的是以下测试过的环境之一:

  • Python 3.9或3.10
  • PyTorch 2.0或以上版本,依赖CUDA对应版本
  • macOS, Linux, 或者是Windows 10 及以上

步骤一:环境搭建

  1. 安装Python:确保Python 3.9或3.10已安装。可以通过命令行输入python --version来检查版本。

  2. 创建虚拟环境(推荐):

    # 对于Linux/MacOS
    python3.9 -m venv myGPTSoVITSenv
    source myGPTSoVITSenv/bin/activate
    
    # 对于Windows
    py -3.9 -m venv myGPTSoVITSenv
    myGPTSoVITSenv\Scripts\activate
    
  3. 安装必要的包: 进入项目根目录后执行:

    pip install -r requirements.txt
    

步骤二:获取项目源码

  • 使用Git克隆仓库:
    git clone https://github.com/RVC-Boss/GPT-SoVITS.git
    
  • 或直接下载ZIP文件并解压到适合的位置。

步骤三:配置环境变量与模型权重下载

  1. 环境变量设置:对于半精度/双精度控制,如有必要,在运行时通过命令行参数指定--env=is_half=True/False

  2. 预训练模型下载

    • 对于中国用户,有特定的下载地址,需先下载至项目内的相应文件夹如GPT_SoVITS/pretrained_models
    • 不同的语言处理模型(如G2PWModel适用于中文TTS),记得解压后更名并放置在正确位置。

步骤四:启动应用

本地运行:
  • 对于集成包,Windows用户只需双击go-webui.bat或在Linux/macOS下使用对应的.sh脚本。
  • 对于手动配置,运行以下命令(根据实际环境调整端口、路径等):
    python webui.py zh  # 语言代码可根据需要更改
    
使用Docker(高级用户适用):
  1. 安装Docker。
  2. 调整docker-compose.yaml中的环境变量和卷挂载点。
  3. 启动容器:
    docker-compose up -d
    

步骤五:验证安装

  • 访问WebUI界面,通常是在浏览器输入localhost的某个端口(如9880),根据提示上传音频样本,体验零样本TTS或少数样本微调的功能。

至此,您已经成功安装并配置了GPT-SoVITS项目,可以开始您的语音合成之旅了。

GPT-SoVITS GPT-SoVITS 项目地址: https://gitcode.com/gh_mirrors/gp/GPT-SoVITS

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈蕊茉Helpful

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值