ACT++ 项目安装和配置指南
act-plus-plus 项目地址: https://gitcode.com/gh_mirrors/ac/act-plus-plus
1. 项目基础介绍和主要的编程语言
项目基础介绍
ACT++(act-plus-plus)是一个开源项目,主要用于实现模仿学习算法,特别是针对移动ALOHA系统的ACT、扩散策略(Diffusion Policy)和VINN(Value Iteration Network)。该项目包含两个模拟环境:Transfer Cube和Bimanual Insertion,用户可以在模拟环境中训练和评估这些算法,也可以在真实环境中应用。
主要的编程语言
该项目主要使用Python编程语言进行开发。
2. 项目使用的关键技术和框架
关键技术和框架
- 模仿学习算法:包括ACT、扩散策略和VINN。
- 模拟环境:使用Mujoco和DM_Control框架创建的模拟环境。
- 深度学习框架:主要使用PyTorch进行模型训练。
- 数据处理:使用HDF5格式存储和处理数据。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux或macOS(Windows系统可能需要额外的配置)。
- Python版本:3.8.10。
- 已安装conda(推荐使用Anaconda或Miniconda)。
详细的安装步骤
步骤1:克隆项目仓库
首先,您需要从GitHub克隆ACT++项目仓库到本地。打开终端并运行以下命令:
git clone https://github.com/MarkFzp/act-plus-plus.git
cd act-plus-plus
步骤2:创建并激活conda环境
接下来,创建一个新的conda环境并激活它。运行以下命令:
conda create -n aloha python=3.8.10
conda activate aloha
步骤3:安装依赖包
在激活的环境中,安装项目所需的所有依赖包。运行以下命令:
pip install torchvision
pip install torch
pip install pyquaternion
pip install pyyaml
pip install rospkg
pip install pexpect
pip install mujoco==2.3.7
pip install dm_control==1.0.14
pip install opencv-python
pip install matplotlib
pip install einops
pip install packaging
pip install h5py
pip install ipython
步骤4:安装DETR和robomimic
项目中使用了DETR和robomimic库,需要单独安装。首先进入detr目录并安装DETR:
cd act/detr
pip install -e .
然后安装robomimic库:
pip install -e git+https://github.com/ARISE-Initiative/robomimic.git@r2d2#egg=robomimic
步骤5:验证安装
安装完成后,您可以通过运行一些示例脚本来验证安装是否成功。例如,生成50个模拟数据集并进行可视化:
python3 record_sim_episodes.py --task_name sim_transfer_cube_scripted --dataset_dir <data save dir> --num_episodes 50
python3 visualize_episodes.py --dataset_dir <data save dir> --episode_idx 0
总结
通过以上步骤,您已经成功安装并配置了ACT++项目。现在您可以开始在模拟环境中训练和评估模仿学习算法,或者在真实环境中应用这些算法。
act-plus-plus 项目地址: https://gitcode.com/gh_mirrors/ac/act-plus-plus