开源项目安装配置指南:探究最快Web框架 - the-benchmarker/web-frameworks

开源项目安装配置指南:探究最快Web框架 - the-benchmarker/web-frameworks

web-frameworks Which is the fastest web framework? web-frameworks 项目地址: https://gitcode.com/gh_mirrors/we/web-frameworks

项目基础介绍及编程语言

项目名称: 探究最快Web框架
仓库链接: https://github.com/the-benchmarker/web-frameworks.git
主要编程语言: Ruby
项目简介: 本项目致力于通过基准测试来比较不同Web框架的性能,旨在回答“哪个是最快的Web框架?”的问题。它覆盖了多个编程语言的框架,并使用Ruby进行脚本编排和数据收集。

关键技术和框架

  • 测试工具: 使用wrk进行压力测试和结果收集。
  • 数据库存储: 结果保存在PostgreSQL中。
  • 容器化技术: Docker用于隔离每个框架的运行环境。
  • 自动化构建: 利用Makefile进行构建和测试流程的管理。
  • 版本控制: 项目基于Git托管在GitHub上。

安装和配置详细步骤

准备工作

  1. 安装Git: 确保你的系统已安装Git,如未安装,请访问 Git官网 下载并安装。

  2. 安装Ruby: 项目依赖于Ruby环境,请安装Ruby,建议使用RVM(Ruby Version Manager)或 rbenv 来管理Ruby版本。

    \curl -L https://get.rvm.io | bash -s stable
    rvm install ruby-<version> # 选择适合的Ruby版本,比如ruby-2.7.2
    
  3. 安装PostgreSQL: 你需要一个本地的PostgreSQL实例来存储测试结果。

    sudo apt-get install postgresql postgresql-contrib # 对于Debian/Ubuntu
    brew install postgresql # 对于MacOS(使用Homebrew)
    
  4. 配置PostgreSQL: 可能需要创建一个新的用户和数据库,具体参考PostgreSQL文档。

  5. 安装必要工具: 包括jq, wrk, 和 Docker。在Debian或Ubuntu上可以这样安装:

    sudo apt-get install jq wrk docker.io
    

对于macOS,可能还需要通过Docker Desktop安装Docker,并使用Docker Machine配置。

项目克隆与设置

  1. 克隆项目到本地:

    git clone https://github.com/the-benchmarker/web-frameworks.git
    
  2. 进入项目目录并安装依赖:

    cd web-frameworks
    gem install bundler
    bundle install
    

构建与执行测试

配置
  • 根据需要编辑配置文件,如果有的话,确保所有必要的服务如数据库已正确配置。
构建指定框架

以PHP/Lumen为例:

  1. 进入对应框架的目录:

    cd php/lumen
    
  2. 执行构建命令,通常在Makefile中有定义,如:

    make build
    
运行测试

回到项目的主目录执行测试收集流程:

export FRAMEWORK=php/lumen # 设置为你想要测试的框架名
make collect

注意:某些平台(尤其是macOS)可能需要特定的环境配置来正确运行Docker,比如使用docker-machine

查看结果

测试完成后,数据会被存入PostgreSQL。你可以查询数据库以查看详细的测试结果,或者项目可能提供了查看结果的工具或脚本。

至此,您已经完成了项目的安装配置,并成功运行了一次性能测试。具体框架的构建和测试步骤可能各有差异,请参照各框架子目录下的说明文件或Makefile进行具体操作。

web-frameworks Which is the fastest web framework? web-frameworks 项目地址: https://gitcode.com/gh_mirrors/we/web-frameworks

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周忱福

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值