EVA 项目常见问题解决方案
EVA 项目地址: https://gitcode.com/gh_mirrors/eva3/EVA
1. 项目基础介绍和主要编程语言
EVA 项目是由清华大学计算机科学与技术系(THU-COAI)开发的一个大规模中文预训练对话模型。该项目的主要目标是构建一个能够进行高质量中文对话的模型,适用于开放域闲聊场景。EVA 项目的主要编程语言是 Python,依赖于深度学习框架如 PyTorch 和一些特定的库如 DeepSpeed 和 Apex 来实现高效的模型训练和推理。
2. 新手使用项目时的注意事项及解决方案
问题1:环境配置问题
描述:新手在配置项目运行环境时,可能会遇到依赖库安装失败或版本不兼容的问题。
解决方案:
- 使用 requirements.txt 安装基础依赖:
pip install -r requirements.txt
- 安装 Apex:
git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
- 安装 DeepSpeed:
注意:DeepSpeed 0.3.9 版本有一些已知的 bug,可能需要手动修改安装后的 Python 包。具体修改方法可以参考项目仓库中的pip install deepspeed==0.3.9
src/ds_fix/
目录下的文件。
问题2:数据准备问题
描述:新手在准备训练数据时,可能会对数据格式和目录结构感到困惑。
解决方案:
- 数据目录结构: 确保数据目录中包含
train.txt
、valid.txt
和test.txt
三个文件,每个文件的每一行为一个对话样本,轮次之间用\t
分隔。 - 数据格式示例:
用户1: 你好\t用户2: 你好,有什么事吗?\t用户1: 我想问个问题。
- 参考示例数据: 可以参考项目仓库中提供的预处理好的 KdConv 数据,了解具体的数据格式和处理方法。
问题3:运行代码问题
描述:新手在运行项目代码时,可能会遇到脚本参数设置错误或路径配置问题。
解决方案:
- 设置环境变量: 在运行脚本之前,确保已经正确设置了
WORKING_DIR
和CKPT_PATH
等环境变量。export WORKING_DIR=/path/to/EVA export CKPT_PATH=/path/to/checkpoint
- 修改脚本参数: 根据实际需求,修改
src/scripts/
目录下的运行脚本,如eva_inference_interactive_beam.sh
和eva_finetune.sh
等。 - 运行脚本: 使用以下命令运行脚本:
bash src/scripts/eva_inference_interactive_beam.sh
通过以上步骤,新手可以顺利配置环境、准备数据并运行 EVA 项目代码。如果在使用过程中遇到其他问题,建议查阅项目仓库中的文档或提交 issue 寻求帮助。