行人检测数据集(已标注)

行人检测数据集(已标注)

项目地址:https://gitcode.com/open-source-toolkit/06ce5

欢迎使用本行人检测数据集!本数据集专为计算机视觉中的人行道物体检测任务设计,提供了详尽的图像标注,帮助研究人员和开发者快速开展行人检测算法的研究与实现。

数据集说明

该数据集包含了丰富的行人检测样本,覆盖了多种场景下的行人出现情况,旨在满足从基础研究到应用开发的不同需求。每个样本都经过精心人工标注,确保标签的准确性和一致性。

格式说明

  • XML文件:遵循PASCAL VOC的标准格式,包含了图像内每个行人框的位置信息及类别标签。
  • TXT文件:提供了一种简洁的标注方式,每行对应一个样本,用于某些特定的检测框架或快速验证实验。

数据结构

数据集按照标准的训练、验证、测试集划分:

  • train/:训练集,用于模型的学习过程。
  • val/:验证集,用于调整模型参数时评估性能。
  • test/:测试集,未经公开标注,用于最终评估模型的泛化能力。

使用方法

  1. 下载与解压:首先下载提供的压缩包,并在本地解压至适当目录。
  2. 配置环境:根据您的开发环境,确保安装有必要的库和工具,如OpenCV、Pillow等。
  3. 加载数据:编写代码读取XML或TXT文件中的标注,导入对应的图像进行处理。
  4. 训练模型:利用训练集来训练您选择的行人检测模型。
  5. 评估与测试:在验证集上优化模型,在测试集上不公布标签的情况下评估模型性能。

注意事项

  • 请尊重数据版权,合理合法地使用数据集,不得用于任何违法或不道德的行为。
  • 强烈建议对数据集进行初步分析,了解其分布特点,以更好地适配您的算法。
  • 在发布基于本数据集的成果时,考虑引用此资源,以便于社区的跟踪与交流。

联系与贡献

对于数据集的使用过程中遇到的问题或者想要贡献自己的标注或其他资源,欢迎通过仓库的Issue板块联系我们。我们期待社区的反馈和参与,共同推进行人检测技术的进步。


开始您的行人检测之旅吧!希望这个数据集能够成为您项目成功的关键助力。

行人检测数据集已标注 行人检测数据集(已标注)欢迎使用本行人检测数据集!本数据集专为计算机视觉中的人行道物体检测任务设计,提供了详尽的图像标注,帮助研究人员和开发者快速开展行人检测算法的研究与实现 行人检测数据集已标注 项目地址: https://gitcode.com/open-source-toolkit/06ce5

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

<think>嗯,用户想了解已标注的YOLO格式的行人检测数据集。首先,我需要确认YOLO数据集标注格式是什么样的。YOLO通常使用.txt文件,每个图像对应一个文件,里面包含对象的类别和边界框的坐标,这些坐标是归一化的,相对于图像的宽度和高度。 接下来,我应该列举一些常见的公开数据集,比如COCO、VOC、Caltech Pedestrian Dataset,还有专门的行人数据集如CityPersons、EuroCity Persons等。需要说明每个数据集的特点,比如图像数量、标注类型、应用场景等。 然后,用户可能需要知道如何获取这些数据集。要提到官方网站或平台,比如COCO的网站,Kaggle,或者学术机构提供的链接。同时,提醒用户注意许可协议,避免侵权。 另外,用户可能对标注工具感兴趣,比如LabelImg、CVAT,这些工具支持YOLO格式的导出。需要简要说明如何使用这些工具进行标注,或者如何将其他格式的标注转换为YOLO格式。 还要考虑到用户的实际应用场景,比如是学术研究还是商业项目,不同的数据集可能适用性不同。例如,Caltech适合学术研究,而EuroCity可能更适合欧洲城市的交通监控。 最后,可能需要提到数据集的挑战,比如遮挡、不同光照条件、密集人群等,这些因素会影响检测效果,而好的标注数据集应该涵盖这些情况。同时,建议用户在使用前检查标注质量,确保边界框准确,类别正确。</think>以下是YOLO格式行人检测数据集的详细介绍: 1. 标注文件格式特点: - 每个图像对应一个.txt文本文件 - 每行格式:`<类别> <x_center> <y_center> <width> <height>` - 坐标值为归一化数值(0-1之间的浮点数) - 示例标注内容: ```text 0 0.4453125 0.6342593 0.1484375 0.2462963 ``` 2. 常用公开数据集(1) COCO 2017 - 包含123,287张图片 - 行人标注包含"person"类别 - 提供密集人群场景标注 - 下载地址:https://cocodataset.org (2) CityPersons - 专门的行人检测数据集 - 包含5,000张城市街景图片 - 标注不同姿态(站立/行走/骑行) - 包含遮挡程度标注 - 下载需申请:https://www.cityscapes-dataset.com (3) Caltech Pedestrian - 经典的行人检测基准 - 约10小时视频(250,000帧) - 标注350,000个行人边界框 - 包含背光/遮挡等挑战场景 - 下载地址:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/ 3. 数据目录结构示例: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 4. 使用建议: - 标注验证:使用可视化工具检查标注准确性(推荐LabelStudio) - 格式转换工具:使用Python库pycocotools处理COCO格式转换 - 预处理建议:保持长宽比调整图像尺寸(如640x640) - 困难样本增强:可添加雨雾模拟、运动模糊等数据增强 5. 标注工具推荐: - CVAT(支持多人协作标注):https://cvat.org - Roboflow(在线标注平台):https://roboflow.com - 本地工具:LabelImg(快捷键:W创建框,Ctrl+S保存) 6. 典型挑战场景标注示例: - 遮挡案例:标注可见部分(YOLOv8建议使用完整身体标注) - 密集人群:最小框间距建议保持2像素以上 - 小尺度行人:建议原始图像分辨率不低于1024x768 最新研究显示(2023),当前最优模型在Caltech数据集上的MR(Miss Rate)已降至3.2%(对比2012年的71%),但夜间场景检测性能仍存在约15%的差距。建议根据实际应用场景选择合适的数据集组合进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

崔庭盼Melvina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值