Sobol敏感性分析 Python实现

Sobol敏感性分析 Python实现

Sobol敏感性分析Python实现 本资源文件提供了Sobol敏感性分析的Python实现方法。通过该方法,您可以评估机器学习模型中不同因素的影响大小。结果分为一阶敏感性、二阶敏感性和总阶敏感性三种 Sobol敏感性分析Python实现 项目地址: https://gitcode.com/open-source-toolkit/3830f

资源描述

本资源文件提供了Sobol敏感性分析的Python实现方法。通过该方法,您可以评估机器学习模型中不同因素的影响大小。结果分为一阶敏感性、二阶敏感性和总阶敏感性三种。

主要内容

  1. Sobol敏感性分析 Python实现方法:详细介绍了如何使用Python进行Sobol敏感性分析,评估机器学习模型中各因素的影响。
  2. 实例详细讲解:包括数据、代码和注释,帮助您更好地理解和应用该方法。
  3. 自定义图的设置:您可以根据需要自定义图的标签、字体大小等设置。
  4. Python代码:代码可直接运行,环境要求为Python 3.6.5和TensorFlow 1.9.0。
  5. RF模型:资源中包含一个训练结束后保存的RF模型(RF.model),用户可以自定义替换。
  6. 结果展示:结果图中展示了样本数为128、256、512、1024和2048五种情况下的分析结果。一般而言,样本数越多,结果越准确。

使用说明

  1. 下载资源文件并解压。
  2. 确保您的Python环境满足要求(Python 3.6.5,TensorFlow 1.9.0)。
  3. 运行提供的Python代码,查看Sobol敏感性分析的结果。
  4. 根据需要自定义图的标签、字体大小等设置。
  5. 如有疑问,可通过邮箱2900045856@qq.com或关注CSDN博主allein_STR后咨询或购买(备注“CSDN资源”)。

注意事项

  • 样本数越多,Sobol敏感性分析的结果越准确。
  • 用户可以根据自己的需求替换RF模型。

希望本资源对您的研究和工作有所帮助!

Sobol敏感性分析Python实现 本资源文件提供了Sobol敏感性分析的Python实现方法。通过该方法,您可以评估机器学习模型中不同因素的影响大小。结果分为一阶敏感性、二阶敏感性和总阶敏感性三种 Sobol敏感性分析Python实现 项目地址: https://gitcode.com/open-source-toolkit/3830f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薄泳蕙Howard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值