聚类分析常用数据集
简介
本仓库提供了一系列聚类分析中常用的人工数据集,这些数据集在聚类分析、数据挖掘、机器学习和模式识别领域中被广泛使用。通过使用这些数据集,研究人员和开发者可以更好地理解和评估不同的聚类算法和方法。
数据集列表
以下是本仓库中包含的数据集列表:
- UCI:wine - 来自UCI机器学习库的葡萄酒数据集,包含178个样本,每个样本有13个特征。
- Iris - 经典的鸢尾花数据集,包含150个样本,每个样本有4个特征。
- yeast - 酵母数据集,包含1484个样本,每个样本有8个特征。
- 4k2_far - 包含4000个样本的数据集,每个样本有2个特征。
- leuk72_3k - 包含3000个样本的数据集,每个样本有72个特征。
使用说明
- 下载数据集:您可以直接从本仓库下载所需的数据集文件。
- 数据格式:所有数据集均为CSV格式,方便导入到各种数据分析工具中。
- 应用场景:这些数据集适用于各种聚类算法的测试和评估,包括K-means、层次聚类、DBSCAN等。
贡献
如果您有其他常用的聚类分析数据集,欢迎提交PR,我们将非常感谢您的贡献。
许可证
本仓库中的数据集遵循开源许可证,具体信息请查看LICENSE文件。
希望这些数据集能够帮助您在聚类分析和相关领域的研究中取得更好的成果!