CIC-IDS-2017数据集下载仓库

CIC-IDS-2017数据集下载仓库

【下载地址】CIC-IDS-2017数据集下载仓库 CIC-IDS-2017数据集是由通信安全机构(CSE)与加拿大网络安全研究所(CIC)合作项目所提供的网络流量数据集。该数据集旨在支持网络流量数据的入侵检测研究,包含了大量真实世界的网络流量数据,对于网络安全领域的研究具有重要意义 【下载地址】CIC-IDS-2017数据集下载仓库 项目地址: https://gitcode.com/open-source-toolkit/57634

简介

CIC-IDS-2017数据集是由通信安全机构(CSE)与加拿大网络安全研究所(CIC)合作项目所提供的网络流量数据集。该数据集旨在支持网络流量数据的入侵检测研究,包含了大量真实世界的网络流量数据,对于网络安全领域的研究具有重要意义。

数据集描述

在入侵检测领域,真实世界的网络流量数据是至关重要的。CIC-IDS-2017数据集填补了现有数据集的许多不足,例如流量多样性不足、缺乏各种已知攻击、数据包有效载荷数据匿名化等问题。该数据集包含了良性和最新的常见攻击,类似于真实世界的网络数据(PCAPs),涵盖了数百万个网络会话记录。

数据集中的网络流量涵盖了多种协议,如TCP、UDP、ICMP等,并提供了详细的标注信息,包括每个网络会话记录的源IP地址、目标IP地址、端口号等。这些详细信息对于研究网络安全领域的入侵检测算法以及评估网络安全解决方案具有重要作用。

数据集的重要性

CIC-IDS-2017数据集的发布,为网络安全领域的研究人员提供了一个高质量、多样化的数据集,有助于推动入侵检测算法的发展和网络安全解决方案的评估。通过使用该数据集,研究人员可以更好地理解和应对当前网络环境中的各种威胁。

使用说明

本仓库提供CIC-IDS-2017数据集的下载链接,用户可以通过下载链接获取数据集文件。建议在下载和使用数据集时,遵守相关的法律法规和学术道德,确保数据的合法使用。

贡献与反馈

如果您在使用过程中遇到任何问题或有任何建议,欢迎通过仓库的Issue功能提出。我们非常欢迎您的反馈,并将不断改进和完善数据集的提供方式。

许可证

本数据集的发布遵循特定的许可证协议,请在使用前仔细阅读并遵守相关条款。


感谢您对CIC-IDS-2017数据集的关注与支持!

【下载地址】CIC-IDS-2017数据集下载仓库 CIC-IDS-2017数据集是由通信安全机构(CSE)与加拿大网络安全研究所(CIC)合作项目所提供的网络流量数据集。该数据集旨在支持网络流量数据的入侵检测研究,包含了大量真实世界的网络流量数据,对于网络安全领域的研究具有重要意义 【下载地址】CIC-IDS-2017数据集下载仓库 项目地址: https://gitcode.com/open-source-toolkit/57634

### CICIDS2017 数据集概述 CICIDS2017 是由加拿大滑铁卢大学网络安全研究所 (Canadian Institute for Cybersecurity, CIC) 创建的数据集,旨在帮助研究者开发和评估入侵检测系统 (Intrusion Detection Systems, IDS)[^3]。 #### 下载指南 为了获取此数据集,访问官方提供的下载页面[^1]: - **官方网站**: [http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/CIC-IDS-2017/PCAPs/](http://205.174.165.80/CICDataset/CIC-2017/Dataset/CIC-IDS-2017/PCAPs/) 此外,另一个可选的资源库也提供了该数据集及其处理后的版本,适用于机器学习应用中的异常检测任务[^4]: - **GitCode 地址**: [https://gitcode.com/open-source-toolkit/e0d8c](https://gitcode.com/open-source-toolkit/e0d8c) #### 特征描述 CICIDS2017 包含了大量的网络流量记录,这些记录被转换成了适合机器学习模型使用的特征向量。具体来说,每条记录都包含了多个维度的信息,比如时间戳、源 IP 和目标 IP 地址、端口号以及所采用的传输层协议等基本信息之外,还有通过工具如 `CICFlowMeter` 提取出来的高级统计特性。 以下是部分重要字段解释: | 字段名 | 描述 | | -- | | Flow Duration | 流持续时间 | | Total Fwd Packets | 正向总包数 | | Total Backward Packets | 反向总包数 | | Min Packet Length | 最小分组长度 | | Max Packet Length | 最大分组长度 | 除了上述基础属性外,还有一些更高层次抽象得到的新变量,它们能够更好地反映潜在的安全威胁模式,例如连接频率、服务响应延迟等指标。 #### 使用建议 当利用这个数据集来进行实验时,推荐先理解其内部结构并探索不同类型的攻击行为之间的差异。考虑到原始 pcap 文件体积较大,在实际操作前最好预先规划好存储空间,并考虑是否需要对特定时间段内的活动做进一步筛选或抽样处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曹筱习Dwayne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值