舌苔数据集 - 中医图像识别资源
Tonguecoatingclassification增强.zip项目地址:https://gitcode.com/open-source-toolkit/7542e
概述
欢迎使用我们的舌苔数据集,这是专为中医智能诊断与图像识别领域设计的一个重要资源。本数据集包含了丰富的舌象图片资料,旨在促进中医药现代化研究及人工智能在这一领域的应用。共计两千余张高质量图像,每张图片均被精确调整至512x512像素,以满足深度学习模型训练对数据标准化的需求。
数据集内容
-
原始图片:清晰的舌苔照片,涵盖了多种不同的舌象特征,适合用于训练AI识别不同类型的舌象。
-
标注信息:利用LabelMe工具仔细标注的图像,提供精准的边界框或区域标注。这为监督学习提供了不可或缺的标签数据,使机器能够学习到舌象的具体特征与分类。
应用场景
- 中医辅助诊断系统:通过分析舌苔图像来辅助判断体质、疾病状态。
- 医疗AI研发:为算法开发者提供训练素材,推动智能健康监测技术进步。
- 学术研究:支持中医药学与计算机视觉交叉学科的研究项目。
技术规格
- 图像尺寸:所有图像统一预处理为512x512像素,优化模型训练效率。
- 数量:超过2000张真实拍摄的舌象图片。
- 标签类型:详细记录了舌苔的颜色、形状等关键信息,便于特征提取和分类。
获取与贡献
- 数据下载:请参阅仓库中的“Download”部分,遵循许可协议进行下载。
- 反馈与贡献:任何对数据集的反馈、错误报告或是希望贡献额外数据,请通过GitHub Issues提交。
使用条款
本数据集遵循知识共享许可协议,具体版本细节请参考仓库中相关文档。使用前,请务必理解并遵守许可条款,尊重原创劳动成果。
我们鼓励学术界与产业界的朋友们利用此数据集推进技术创新,期待在促进传统医学与现代科技融合的道路上共同前进。如果您基于本数据集做出了有意思的研究或应用,请不吝分享,我们非常乐意看到它的价值得以最大化。祝您的研究顺利!
Tonguecoatingclassification增强.zip项目地址:https://gitcode.com/open-source-toolkit/7542e