Adam随机梯度下降优化算法的Matlab实现

Adam随机梯度下降优化算法的Matlab实现

【下载地址】Adam随机梯度下降优化算法的Matlab实现 本仓库提供了一个名为 `fmin_adam` 的 Matlab 实现,该实现基于 Kingma 和 Ba 提出的 Adam 优化算法。Adam 是一种自适应学习率的梯度下降算法,特别适用于处理随机梯度下降问题,例如在小批量数据上估计梯度或在随机 dropout 正则化中使用 【下载地址】Adam随机梯度下降优化算法的Matlab实现 项目地址: https://gitcode.com/open-source-toolkit/866c2

简介

本仓库提供了一个名为 fmin_adam 的 Matlab 实现,该实现基于 Kingma 和 Ba 提出的 Adam 优化算法。Adam 是一种自适应学习率的梯度下降算法,特别适用于处理随机梯度下降问题,例如在小批量数据上估计梯度或在随机 dropout 正则化中使用。

功能描述

fmin_adam 实现了 Adam 优化算法,该算法结合了动量和自适应学习率,能够在每个参数上单独调整学习率。这使得 Adam 在处理复杂优化问题时表现出色。

使用方法

[x, fval, exitflag, output] = fmin_adam(fun, x0, <stepSize, beta1, beta2, epsilon, nEpochSize, options>)
  • fun: 目标函数句柄。
  • x0: 初始参数向量。
  • stepSize: 学习率(可选,默认值为 0.001)。
  • beta1: 动量衰减率(可选,默认值为 0.9)。
  • beta2: 二阶矩估计衰减率(可选,默认值为 0.999)。
  • epsilon: 防止除零的小常数(可选,默认值为 1e-8)。
  • nEpochSize: 每个 epoch 的大小(可选,默认值为 1000)。
  • options: 其他优化选项(可选)。

参考文献

[1] Diederik P. Kingma, Jimmy Ba. "Adam: A Method for Stochastic Optimization."

示例

本仓库包含几个示例,展示了如何使用 fmin_adam 进行优化。请查看仓库中的示例文件以获取更多详细信息。

注意事项

  • 该实现适用于 Matlab 环境。
  • 请根据具体问题调整参数以获得最佳性能。

贡献

欢迎提交问题和改进建议。如果您有任何疑问或需要帮助,请在仓库中创建一个 Issue。

许可证

本项目采用 MIT 许可证。有关更多信息,请参阅 LICENSE 文件。

【下载地址】Adam随机梯度下降优化算法的Matlab实现 本仓库提供了一个名为 `fmin_adam` 的 Matlab 实现,该实现基于 Kingma 和 Ba 提出的 Adam 优化算法。Adam 是一种自适应学习率的梯度下降算法,特别适用于处理随机梯度下降问题,例如在小批量数据上估计梯度或在随机 dropout 正则化中使用 【下载地址】Adam随机梯度下降优化算法的Matlab实现 项目地址: https://gitcode.com/open-source-toolkit/866c2

### MATLAB实现Adam随机梯度下降法 为了在MATLAB实现Adam随机梯度下降法,可以利用已有的开源资源。一个名为 `fmin_adam` 的MATLAB实现提供了基于Kingma和Ba提出的Adam优化算法的功能[^1]。 #### 函数定义 此函数能够处理随机梯度下降问题,特别是当涉及到小批量数据上的梯度估计或是应用随机dropout正则化的情况时表现良好。下面是一个简化版的Adam优化器伪代码表示: ```matlab function [theta, loss_history] = fmin_adam(fun_grad, theta0, options) % fun_grad: 计算目标函数及其梯度的句柄 % theta0: 初始参数向量 % options: 包含学习率、迭代次数等设置的结构体 beta1 = 0.9; % 衰减率m_t beta2 = 0.999; % 衰减率v_t epsilon = 1e-8; alpha = options.alpha; m_t = zeros(size(theta0)); % 初始化一阶矩估计 v_t = zeros(size(theta0)); % 初始化二阶矩估计 t = 0; % 迭代计数初始化 loss_history = []; while t < options.maxiter && converged == false t = t + 1; [grad, cost] = feval(fun_grad, theta); m_t = beta1 * m_t + (1 - beta1) * grad; v_t = beta2 * v_t + (1 - beta2) * (grad .* grad); m_cap = m_t ./ (1-(beta1^t)); v_cap = v_t ./ (1-(beta2^t)); delta_theta = -(alpha*m_cap)./(sqrt(v_cap)+epsilon); theta = theta + delta_theta; loss_history = [loss_history; cost]; end ``` 这段代码展示了如何通过更新规则来调整模型参数θ,在每次迭代过程中计算新的梯度,并据此修正一阶矩(m_t)与二阶矩(v_t),最终完成一次完整的Adam优化流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宫蓓姝Garth

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值