电力变压器油中溶解气体数据集:深度分析与应用推荐
【下载地址】电力变压器油中溶解气体数据集 电力变压器油中溶解气体数据集 项目地址: https://gitcode.com/open-source-toolkit/9f0a8
项目介绍
在电力系统的运行中,变压器作为关键设备,其健康状态的监测至关重要。油中溶解气体分析(DGA)是评估变压器状态的重要手段之一。为了推动这一领域的研究,我们推出了“电力变压器油中溶解气体数据集”。该数据集涵盖了两年的详细记录,每分钟记录一次,提供了丰富的数据资源,旨在帮助研究人员和工程师深入分析变压器的运行状态,预测潜在故障,并优化维护策略。
项目技术分析
数据集结构
本数据集分为四个部分:
- ETT-small-m1 和 ETT-small-m2:每分钟记录的数据集,每个数据集包含70080个数据点。
- ETT-small-h1 和 ETT-small-h2:每小时记录的数据集,每个数据集包含35040个数据点。
数据点特征
每个数据点包含8维特征:
- 记录日期
- 油温(预测值)
- 外部负载值1
- 外部负载值2
- 外部负载值3
- 外部负载值4
- 外部负载值5
- 外部负载值6
技术优势
- 高频数据记录:每分钟记录一次,提供了极高的数据粒度,适用于需要精细分析的应用场景。
- 多维度特征:包含油温和多个外部负载值,全面反映变压器的运行状态。
- 时间序列分析:适用于时间序列分析和预测模型,如LSTM、ARIMA等。
项目及技术应用场景
应用场景
- 故障预测与诊断:通过分析油中溶解气体的变化趋势,预测变压器可能出现的故障,提前进行维护。
- 性能优化:利用数据集进行模型训练,优化变压器的运行参数,提高系统效率。
- 研究与教育:为学术研究提供丰富的数据资源,支持相关领域的教育培训。
技术应用
- 机器学习模型:利用数据集训练机器学习模型,如随机森林、支持向量机等,进行故障预测。
- 深度学习模型:使用LSTM、GRU等深度学习模型,分析时间序列数据,预测油温变化。
- 数据可视化:通过数据可视化工具,直观展示变压器的运行状态和气体变化趋势。
项目特点
数据丰富
- 两年记录:数据集涵盖了两年的详细记录,提供了充足的数据资源。
- 高频记录:每分钟记录一次,数据粒度高,适用于精细分析。
多维度特征
- 8维特征:包含油温和多个外部负载值,全面反映变压器的运行状态。
开源共享
- 开源数据集:数据集完全开源,支持学术研究和工业应用。
- 社区贡献:欢迎用户提交Issue或Pull Request,共同完善数据集。
注意事项
- 研究使用:数据集仅供研究使用,不得用于商业用途。
- 模拟数据:数据点均为模拟数据,不代表实际电力变压器的运行状态。
结语
“电力变压器油中溶解气体数据集”为电力系统的研究和应用提供了宝贵的数据资源。无论您是研究人员、工程师,还是对电力系统感兴趣的爱好者,都可以利用这一数据集进行深入分析和创新应用。我们期待您的参与和贡献,共同推动电力系统的发展和优化。
【下载地址】电力变压器油中溶解气体数据集 电力变压器油中溶解气体数据集 项目地址: https://gitcode.com/open-source-toolkit/9f0a8