12306自动抢票脚本

12306自动抢票脚本

【下载地址】12306自动抢票脚本 12306自动抢票脚本 【下载地址】12306自动抢票脚本 项目地址: https://gitcode.com/open-source-toolkit/62f40

资源文件介绍

文件名

一个12306自动抢票的脚本.zip

文件描述

这是一个使用Python编写的12306自动抢票脚本。该脚本可以在指定时间自动登录12306网站,并尝试抢购指定车次的火车票。

功能特点

  • 自动登录:脚本能够自动登录12306网站,无需手动操作。
  • 定时抢票:用户可以设置抢票时间,脚本会在指定时间自动开始抢票。
  • 指定车次:用户可以指定需要抢购的车次,脚本会优先尝试抢购指定车次的票。

使用说明

  1. 下载脚本:下载并解压一个12306自动抢票的脚本.zip文件。
  2. 配置参数:根据脚本中的说明,配置登录信息、抢票时间和目标车次等参数。
  3. 运行脚本:在Python环境中运行脚本,脚本会自动开始抢票。

注意事项

  • 请确保网络连接稳定,以免影响抢票效果。
  • 使用脚本抢票时,请遵守相关法律法规,不要用于非法用途。

反馈与支持

如果在使用过程中遇到任何问题,欢迎通过GitHub的Issues功能提交反馈。我们会尽快回复并提供支持。


希望这个脚本能帮助你顺利抢到心仪的车票!祝你旅途愉快!

【下载地址】12306自动抢票脚本 12306自动抢票脚本 【下载地址】12306自动抢票脚本 项目地址: https://gitcode.com/open-source-toolkit/62f40

### 使用Python编写12306脚本的方法 实现12306功能涉及多个方面,包括但不限于获取车次信息、处理登录验证以及最终提交订单。下面将详细介绍如何利用Python完成这些操作。 #### 获取车次信息并存储至CSV文件 为了从12306网站抓取所需数据,可以采用`requests`库发起HTTP请求,并借助于`BeautifulSoup`或`lxml`解析HTML文档来提取有用的信息。对于具体某天出发的列车班次详情,则需构建URL参数传递给服务器查询接口。得到的数据会被整理成结构化的形式存入CSV文件内以便后续分析使用[^1]。 ```python import requests from bs4 import BeautifulSoup import csv def fetch_ticket_info(departure, arrival, date): url = "https://kyfw.12306.cn/otn/leftTicket/queryTicketPrice" params = { 'train_no': '', 'from_station': departure, 'to_station': arrival, 'depart_date': date } response = requests.get(url=url,params=params) soup = BeautifulSoup(response.text,'html.parser') tickets_data = parse_html(soup) with open('tickets.csv', mode='w') as file: writer = csv.writer(file) for ticket in tickets_data: writer.writerow(ticket.values()) fetch_ticket_info("北京","上海","2023-10-18") ``` 请注意上述代码仅为示意性质,在实际应用中可能需要调整API路径及参数名称以匹配最新版12306 API规格说明;另外由于铁路部门不断更新其安全机制,因此直接访问官方页面的方式可能会遇到反爬措施而失败。 #### 自动化发送与接收电子邮件 当用户确认好想要预订的具体行程之后,可以通过SMTP协议向指定电子邮箱地址发送带有附件(即之前生成好的CSV文件)的通知信件。而在接收到回复后再次读取消息体内的指令从而得知乘客选定的是哪一班车次准备下一步动作。这里推荐使用`smtplib`和`imaplib`两个标准模块来进行邮件收发工作。 ```python import smtplib from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.encoders import encode_base64 from imapclient import IMAPClient # 发送带附件的邮件... msg = MIMEMultipart() attachment = MIMEBase('application','octet-stream') with open('tickets.csv','rb')as f: attachment.set_payload(f.read()) encode_base64(attachment) attachment.add_header('Content-Disposition',"attachment; filename=tickets.csv") msg.attach(attachment) server = smtplib.SMTP('smtp.example.com') server.login(user,password) server.sendmail(sender,receivers,msg.as_string()) # 接受邮件并解析内容... HOST = 'imap.example.com' USERNAME = '' PASSWORD = '' server = IMAPClient(HOST, use_uid=True) server.login(USERNAME,PASSWORD) select_info = server.select_folder('INBOX') messages = server.search(['FROM', sender]) for msgid,data in server.fetch(messages,['ENVELOPE']).items(): envelope = data[b'ENVELOPE'] print(envelope.subject.decode()) # 打印主题 server.logout() ``` 同样需要注意替换掉示例中的主机名(`smtp.example.com`)以及其他敏感字段如用户名密码等真实值前缀。 #### 处理图形验证码 针对12306过程中的人机识别环节——图形验证码问题,当前较为流行的解决方案有两种: 一种方式是集成第三方OCR服务提供商所提供的SDK工具包,比如腾讯云AI开放平台就提供了专门用于破解此类图片型挑战题目的API接口,只需上传待解密图像即可返回对应的文字描述结果供程序进一步调用下单函数时作为输入项之一传入。 另一种则是基于机器学习模型训练自定义分类器自行搭建一套完整的预测体系,不过这通常要求开发者具备一定算法理论基础并且掌握深度神经网络框架TensorFlow/Keras等相关技能才能较好地胜任这项任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

井朦敏Thora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值